These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 33578157)
21. Detection of functional microorganisms in benzene [a] pyrene-contaminated soils using DNA-SIP technology. Wang B; Teng Y; Yao H; Christie P J Hazard Mater; 2021 Apr; 407():124788. PubMed ID: 33321373 [TBL] [Abstract][Full Text] [Related]
22. Rhizosphere mediated biodegradation of benzo(A)pyrene by surfactin producing soil bacilli applied through Kotoky R; Pandey P Int J Phytoremediation; 2020; 22(4):363-372. PubMed ID: 31522524 [TBL] [Abstract][Full Text] [Related]
23. Oxidation of benzo[a]pyrene by laccase in soil enhances bound residue formation and reduces disturbance to soil bacterial community composition. Zeng J; Zhu Q; Wu Y; Shan J; Ji R; Lin X Environ Pollut; 2018 Nov; 242(Pt A):462-469. PubMed ID: 30005258 [TBL] [Abstract][Full Text] [Related]
24. Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site. Sharma M; Nandy A; Taylor N; Venkatesan SV; Ozhukil Kollath V; Karan K; Thangadurai V; Tsesmetzis N; Gieg LM J Hazard Mater; 2020 May; 389():121845. PubMed ID: 31862354 [TBL] [Abstract][Full Text] [Related]
25. Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Sherafatmand M; Ng HY Bioresour Technol; 2015 Nov; 195():122-30. PubMed ID: 26081161 [TBL] [Abstract][Full Text] [Related]
26. Transformation and mineralization of benzo[a]pyrene by microbial cultures enriched on mixtures of three- and four-ring polycyclic aromatic hydrocarbons. Dries J; Smets BF J Ind Microbiol Biotechnol; 2002 Feb; 28(2):70-3. PubMed ID: 12074054 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous PAHs degradation, odour mitigation and energy harvesting by sediment microbial fuel cell coupled with nitrate-induced biostimulation. Zhang Z; Zhang K; Ouyang H; Li MKK; Luo Z; Li Y; Chen C; Yang X; Shao Z; Yan DYS J Environ Manage; 2021 Apr; 284():112045. PubMed ID: 33567357 [TBL] [Abstract][Full Text] [Related]
28. Effect of soil organic matter (SOM) on the degradation of polycyclic aromatic hydrocarbons using Pleurotus dryinus IBB 903-A microcosm study. Rathankumar AK; Saikia K; Ramachandran K; Batista RA; Cabana H; Vaidyanathan VK J Environ Manage; 2020 Apr; 260():110153. PubMed ID: 32090843 [TBL] [Abstract][Full Text] [Related]
29. Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation. Zhao X; Li J; Zhang D; Jiang L; Wang Y; Hu B; Wang S; Dai Y; Luo C; Zhang G Environ Int; 2023 Oct; 180():108215. PubMed ID: 37741005 [TBL] [Abstract][Full Text] [Related]
30. Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil. Nam K; Kukor JJ Biodegradation; 2000; 11(1):1-9. PubMed ID: 11194968 [TBL] [Abstract][Full Text] [Related]
31. A commercial humic acid inhibits benzo(a)pyrene biodegradation by Paracoccus aminovorans HPD-2. Wang B; Wang P; Liu S; Shi H; Teng Y Sci Total Environ; 2024 Jun; 927():171966. PubMed ID: 38537831 [TBL] [Abstract][Full Text] [Related]
32. Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community. Yu B; Tian J; Feng L J Hazard Mater; 2017 Aug; 336():110-118. PubMed ID: 28494298 [TBL] [Abstract][Full Text] [Related]
33. Enzyme activities during Benzo[a]pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Cao H; Wang C; Liu H; Jia W; Sun H Sci Rep; 2020 Jan; 10(1):865. PubMed ID: 31964981 [TBL] [Abstract][Full Text] [Related]
34. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells. Gustave W; Yuan ZF; Sekar R; Ren YX; Liu JY; Zhang J; Chen Z Chemosphere; 2019 Dec; 237():124459. PubMed ID: 31377597 [TBL] [Abstract][Full Text] [Related]
35. Removal of organic matter and electricity generation of sediments from Progreso, Yucatan, Mexico, in a sediment microbial fuel cell. González-Gamboa NK; Valdés-Lozano DS; Barahona-Pérez LF; Alzate-Gaviria L; Domínguez-Maldonado JA Environ Sci Pollut Res Int; 2017 Feb; 24(6):5868-5876. PubMed ID: 28063086 [TBL] [Abstract][Full Text] [Related]
36. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria. Gutiérrez-Ginés MJ; Hernández AJ; Pérez-Leblic MI; Pastor J; Vangronsveld J J Environ Manage; 2014 Oct; 143():197-207. PubMed ID: 24912107 [TBL] [Abstract][Full Text] [Related]
37. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities. Hamdan HZ; Salam DA; Hari AR; Semerjian L; Saikaly P Sci Total Environ; 2017 Jan; 575():1453-1461. PubMed ID: 27720249 [TBL] [Abstract][Full Text] [Related]
38. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Viñas M; Sabaté J; Espuny MJ; Solanas AM Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736 [TBL] [Abstract][Full Text] [Related]
39. Metabolic capacity to alter polycyclic aromatic hydrocarbons and its microbe-mediated remediation. Yamini V; Rajeswari VD Chemosphere; 2023 Jul; 329():138707. PubMed ID: 37068614 [TBL] [Abstract][Full Text] [Related]