These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33578397)

  • 1. Transition from elastic to plastic strain release in core-shell nanowires revealed by in-plane x-ray diffraction.
    Al Hassan A; Salehi WA; Lewis RB; Anjum T; Sternemann C; Geelhaar L; Pietsch U
    Nanotechnology; 2021 May; 32(20):205705. PubMed ID: 33578397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous Strain Relaxation in Core-Shell Nanowire Heterostructures via Simultaneous Coherent and Incoherent Growth.
    Lewis RB; Nicolai L; Küpers H; Ramsteiner M; Trampert A; Geelhaar L
    Nano Lett; 2017 Jan; 17(1):136-142. PubMed ID: 28001430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bending and reverse bending during the fabrication of novel GaAs/(In,Ga)As/GaAs core-shell nanowires monitored by
    Al Hassan A; AlHumaidi M; Kalt J; Schneider R; Müller E; Anjum T; Khadiev A; Novikov DV; Pietsch U; Baumbach T
    Nanotechnology; 2024 May; 35(29):. PubMed ID: 38631325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray Bragg Ptychography on a Single InGaN/GaN Core-Shell Nanowire.
    Dzhigaev D; Stankevič T; Bi Z; Lazarev S; Rose M; Shabalin A; Reinhardt J; Mikkelsen A; Samuelson L; Falkenberg G; Feidenhans'l R; Vartanyants IA
    ACS Nano; 2017 Jul; 11(7):6605-6611. PubMed ID: 28264155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.
    Rieger T; Zellekens P; Demarina N; Hassan AA; Hackemüller FJ; Lüth H; Pietsch U; Schäpers T; Grützmacher D; Lepsa MI
    Nanoscale; 2017 Nov; 9(46):18392-18401. PubMed ID: 29147699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition and strain relaxation of In
    Soundararajah QY; Webster RF; Griffiths IJ; Novikov SV; Foxon CT; Cherns D
    Nanotechnology; 2018 Oct; 29(40):405706. PubMed ID: 30010093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Threefold rotational symmetry in hexagonally shaped core-shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging.
    Davtyan A; Krause T; Kriegner D; Al-Hassan A; Bahrami D; Mostafavi Kashani SM; Lewis RB; Küpers H; Tahraoui A; Geelhaar L; Hanke M; Leake SJ; Loffeld O; Pietsch U
    J Appl Crystallogr; 2017 Jun; 50(Pt 3):673-680. PubMed ID: 28656032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bending and Twisting Lattice Tilt in Strained Core-Shell Nanowires Revealed by Nanofocused X-ray Diffraction.
    Wallentin J; Jacobsson D; Osterhoff M; Borgström MT; Salditt T
    Nano Lett; 2017 Jul; 17(7):4143-4150. PubMed ID: 28613907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.
    Guan X; Becdelievre J; Meunier B; Benali A; Saint-Girons G; Bachelet R; Regreny P; Botella C; Grenet G; Blanchard NP; Jaurand X; Silly MG; Sirotti F; Chauvin N; Gendry M; Penuelas J
    Nano Lett; 2016 Apr; 16(4):2393-9. PubMed ID: 27008537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twofold origin of strain-induced bending in core-shell nanowires: the GaP/InGaP case.
    Gagliano L; Albani M; Verheijen MA; Bakkers EPAM; Miglio L
    Nanotechnology; 2018 Aug; 29(31):315703. PubMed ID: 29749960
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Al-Humaidi M; Feigl L; Jakob J; Schroth P; AlHassan A; Davtyan A; Herranz J; Anjum T; Novikov D; Francoual S; Geelhaar L; Baumbach T; Pietsch U
    Nanotechnology; 2021 Oct; 33(1):. PubMed ID: 34560680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherently Strained Si-SixGe1-x Core-Shell Nanowire Heterostructures.
    Dillen DC; Wen F; Kim K; Tutuc E
    Nano Lett; 2016 Jan; 16(1):392-8. PubMed ID: 26606651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime.
    Zhou C; Zhang XT; Zheng K; Chen PP; Matsumura S; Lu W; Zou J
    Nanoscale; 2019 Apr; 11(14):6859-6865. PubMed ID: 30912781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cracking the Si Shell Growth in Hexagonal GaP-Si Core-Shell Nanowires.
    Conesa-Boj S; Hauge HI; Verheijen MA; Assali S; Li A; Bakkers EP; Fontcuberta i Morral A
    Nano Lett; 2015 May; 15(5):2974-9. PubMed ID: 25922878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Electron Mobility in Nonplanar Tensile Strained Si Epitaxially Grown on Si
    Wen F; Tutuc E
    Nano Lett; 2018 Jan; 18(1):94-100. PubMed ID: 29185763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires.
    Albani M; Assali S; Verheijen MA; Koelling S; Bergamaschini R; Pezzoli F; Bakkers EPAM; Miglio L
    Nanoscale; 2018 Apr; 10(15):7250-7256. PubMed ID: 29632946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing misfit dislocations in InAs
    Lazarev S; Göransson DJO; Borgström M; Messing ME; Xu HQ; Dzhigaev D; Yefanov OM; Bauer S; Baumbach T; Feidenhans'l R; Samuelson L; Vartanyants IA
    Nanotechnology; 2019 Dec; 30(50):505703. PubMed ID: 31480023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous core–shell elemental distribution in In-rich In(x)Ga1-xN nanowires grown by molecular beam epitaxy.
    Gómez-Gómez M; Garro N; Segura-Ruiz J; Martinez-Criado G; Cantarero A; Mengistu HT; García-Cristóbal A; Murcia-Mascarós S; Denker C; Malindretos J; Rizzi A
    Nanotechnology; 2014 Feb; 25(7):075705. PubMed ID: 24457628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of the growth of GaAs-AlGaAs core-shell nanowires.
    Zhang Q; Voorhees PW; Davis SH
    Beilstein J Nanotechnol; 2017; 8():506-513. PubMed ID: 28326241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastic and elastic strain fields in GaAs/Si core-shell nanowires.
    Conesa-Boj S; Boioli F; Russo-Averchi E; Dunand S; Heiss M; Rüffer D; Wyrsch N; Ballif C; Miglio L; Fontcuberta i Morral A
    Nano Lett; 2014; 14(4):1859-64. PubMed ID: 24564880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.