BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33579189)

  • 1. CHICKN: extraction of peptide chromatographic elution profiles from large scale mass spectrometry data by means of Wasserstein compressive hierarchical cluster analysis.
    Permiakova O; Guibert R; Kraut A; Fortin T; Hesse AM; Burger T
    BMC Bioinformatics; 2021 Feb; 22(1):68. PubMed ID: 33579189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LC-MSsim--a simulation software for liquid chromatography mass spectrometry data.
    Schulz-Trieglaff O; Pfeifer N; Gröpl C; Kohlbacher O; Reinert K
    BMC Bioinformatics; 2008 Oct; 9():423. PubMed ID: 18842122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline.
    Jaitly N; Monroe ME; Petyuk VA; Clauss TR; Adkins JN; Smith RD
    Anal Chem; 2006 Nov; 78(21):7397-409. PubMed ID: 17073405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-based feature matching improves protein identification via LC-MS and tandem MS.
    Noy K; Towfic F; Wittenberg GM; Fasulo D
    J Comput Biol; 2011 Apr; 18(4):547-57. PubMed ID: 21417940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MASIC: a software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC-MS(/MS) features.
    Monroe ME; Shaw JL; Daly DS; Adkins JN; Smith RD
    Comput Biol Chem; 2008 Jun; 32(3):215-7. PubMed ID: 18440872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph-based peak alignment algorithms for multiple liquid chromatography-mass spectrometry datasets.
    Wang J; Lam H
    Bioinformatics; 2013 Oct; 29(19):2469-76. PubMed ID: 23904508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving mass and liquid chromatography based identification of proteins using bayesian scoring.
    Chen SS; Deutsch EW; Yi EC; Li XJ; Goodlett DR; Aebersold R
    J Proteome Res; 2005; 4(6):2174-84. PubMed ID: 16335964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MSSimulator: Simulation of mass spectrometry data.
    Bielow C; Aiche S; Andreotti S; Reinert K
    J Proteome Res; 2011 Jul; 10(7):2922-9. PubMed ID: 21526843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clustering with position-specific constraints on variance: applying redescending M-estimators to label-free LC-MS data analysis.
    Frühwirth R; Mani DR; Pyne S
    BMC Bioinformatics; 2011 Aug; 12():358. PubMed ID: 21884583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CLUE-TIPS, clustering methods for pattern analysis of LC-MS data.
    Akella LM; Rejtar T; Orazine C; Hincapie M; Hancock WS
    J Proteome Res; 2009 Oct; 8(10):4732-42. PubMed ID: 19725534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid geometry solves "curse of dimensionality" effects in clustering methods: An application to omics data.
    Adachi S
    PLoS One; 2017; 12(6):e0179180. PubMed ID: 28614363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
    Rieder V; Schork KU; Kerschke L; Blank-Landeshammer B; Sickmann A; Rahnenführer J
    J Proteome Res; 2017 Nov; 16(11):4035-4044. PubMed ID: 28959885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Evaluation of Algorithms for Isotopic Envelope Extraction via Extracted Ion Chromatogram Clustering.
    Gutierrez M; Handy K; Smith R
    J Proteome Res; 2018 Nov; 17(11):3774-3779. PubMed ID: 30265546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aligning LC peaks by converting gradient retention times to retention index of peptides in proteomic experiments.
    Shinoda K; Tomita M; Ishihama Y
    Bioinformatics; 2008 Jul; 24(14):1590-5. PubMed ID: 18492686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LC-MS peak assignment based on unanimous selection by six machine learning algorithms.
    Ito H; Matsui T; Konno R; Itakura M; Kodera Y
    Sci Rep; 2021 Dec; 11(1):23411. PubMed ID: 34862414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProteomicsML: An Online Platform for Community-Curated Data sets and Tutorials for Machine Learning in Proteomics.
    Rehfeldt TG; Gabriels R; Bouwmeester R; Gessulat S; Neely BA; Palmblad M; Perez-Riverol Y; Schmidt T; Vizcaíno JA; Deutsch EW
    J Proteome Res; 2023 Feb; 22(2):632-636. PubMed ID: 36693629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy C-means clustering for chromatographic fingerprints analysis: A gas chromatography-mass spectrometry case study.
    Parastar H; Bazrafshan A
    J Chromatogr A; 2016 Mar; 1438():236-43. PubMed ID: 26916594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MZDASoft: a software architecture that enables large-scale comparison of protein expression levels over multiple samples based on liquid chromatography/tandem mass spectrometry.
    Ghanat Bari M; Ramirez N; Wang Z; Zhang JM
    Rapid Commun Mass Spectrom; 2015 Oct; 29(19):1841-8. PubMed ID: 26331936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for automatically interpreting mass spectra of 18O-labeled isotopic clusters.
    Mason CJ; Therneau TM; Eckel-Passow JE; Johnson KL; Oberg AL; Olson JE; Nair KS; Muddiman DC; Bergen HR
    Mol Cell Proteomics; 2007 Feb; 6(2):305-18. PubMed ID: 17068186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MassUntangler: a novel alignment tool for label-free liquid chromatography-mass spectrometry proteomic data.
    Ballardini R; Benevento M; Arrigoni G; Pattini L; Roda A
    J Chromatogr A; 2011 Dec; 1218(49):8859-68. PubMed ID: 21783198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.