These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33579301)

  • 1. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities.
    Xu D; Xu H; Zhang Y; Wang M; Chen W; Gao R
    J Transl Med; 2021 Feb; 19(1):66. PubMed ID: 33579301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA-disease association prediction.
    Chen X; Niu YW; Wang GH; Yan GY
    J Transl Med; 2017 Dec; 15(1):251. PubMed ID: 29233191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe-Disease Association prediction.
    Wang F; Huang ZA; Chen X; Zhu Z; Wen Z; Zhao J; Yan GY
    Sci Rep; 2017 Aug; 7(1):7601. PubMed ID: 28790448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations.
    Yan C; Wang J; Wu FX
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):520. PubMed ID: 30598076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network.
    Long Y; Luo J
    BMC Bioinformatics; 2019 Nov; 20(1):541. PubMed ID: 31675979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association.
    Zhao Y; Chen X; Yin J; Qu J
    RNA Biol; 2020 Feb; 17(2):281-291. PubMed ID: 31739716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares.
    Wang W; Chen H
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Collaborative Weighted Non-negative Matrix Factorization Improves Prediction of Disease-Associated Human Microbes.
    Xu D; Xu H; Zhang Y; Gao R
    Front Microbiol; 2022; 13():834982. PubMed ID: 35369503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Similarities Bilinear Matrix Factorization-Based Method for Predicting Human Microbe-Disease Associations.
    Yang X; Kuang L; Chen Z; Wang L
    Front Genet; 2021; 12():754425. PubMed ID: 34721543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):611-620. PubMed ID: 31295117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Microbe-Disease Association Prediction With Graph Regularized Non-Negative Matrix Factorization.
    He BS; Peng LH; Li Z
    Front Microbiol; 2018; 9():2560. PubMed ID: 30443240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NTSHMDA: Prediction of Human Microbe-Disease Association Based on Random Walk by Integrating Network Topological Similarity.
    Luo J; Long Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1341-1351. PubMed ID: 30489271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.
    Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L
    Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BRWMDA:Predicting Microbe-Disease Associations Based on Similarities and Bi-Random Walk on Disease and Microbe Networks.
    Yan C; Duan G; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1595-1604. PubMed ID: 30932846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Virus-Receptor Interactions Based on Improving Similarities.
    Zhu L; Yan C; Duan G
    J Comput Biol; 2021 Jul; 28(7):650-659. PubMed ID: 33481654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm.
    Liu H; Bing P; Zhang M; Tian G; Ma J; Li H; Bao M; He K; He J; He B; Yang J
    Comput Struct Biotechnol J; 2023; 21():1414-1423. PubMed ID: 36824227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Microbe-Disease Association Based on a Novel Back-Propagation Neural Network Model.
    Li H; Wang Y; Zhang Z; Tan Y; Chen Z; Wang X; Pei T; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2502-2513. PubMed ID: 32305935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PBHMDA: Path-Based Human Microbe-Disease Association Prediction.
    Huang ZA; Chen X; Zhu Z; Liu H; Yan GY; You ZH; Wen Z
    Front Microbiol; 2017; 8():233. PubMed ID: 28275370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Microbe-Disease Associations by Graph Regularized Non-Negative Matrix Factorization.
    Liu Y; Wang SL; Zhang JF
    J Comput Biol; 2018 Aug; ():. PubMed ID: 30106318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bidirectional Label Propagation Based Computational Model for Potential Microbe-Disease Association Prediction.
    Wang L; Wang Y; Li H; Feng X; Yuan D; Yang J
    Front Microbiol; 2019; 10():684. PubMed ID: 31024481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.