BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33579781)

  • 21. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries.
    Krishnamurthy S; Ghazy MA; Moore C; Hampsey M
    Mol Cell Biol; 2009 Jun; 29(11):2925-34. PubMed ID: 19332564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression.
    Hintermair C; Voß K; Forné I; Heidemann M; Flatley A; Kremmer E; Imhof A; Eick D
    Sci Rep; 2016 Jun; 6():27401. PubMed ID: 27264542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast.
    Chatterjee D; Sanchez AM; Goldgur Y; Shuman S; Schwer B
    RNA; 2016 Jul; 22(7):1011-25. PubMed ID: 27165520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering the RNA polymerase II CTD code in fission yeast.
    Schwer B; Shuman S
    Mol Cell; 2011 Jul; 43(2):311-8. PubMed ID: 21684186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner.
    Nemec CM; Yang F; Gilmore JM; Hintermair C; Ho YH; Tseng SC; Heidemann M; Zhang Y; Florens L; Gasch AP; Eick D; Washburn MP; Varani G; Ansari AZ
    Proc Natl Acad Sci U S A; 2017 May; 114(20):E3944-E3953. PubMed ID: 28465432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression.
    Egloff S; O'Reilly D; Chapman RD; Taylor A; Tanzhaus K; Pitts L; Eick D; Murphy S
    Science; 2007 Dec; 318(5857):1777-9. PubMed ID: 18079403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcription by RNA polymerase II and the CTD-chromatin crosstalk.
    Singh N; Asalam M; Ansari MO; Gerasimova NS; Studitsky VM; Akhtar MS
    Biochem Biophys Res Commun; 2022 Apr; 599():81-86. PubMed ID: 35176629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.
    Heidemann M; Hintermair C; Voß K; Eick D
    Biochim Biophys Acta; 2013 Jan; 1829(1):55-62. PubMed ID: 22982363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-specific methylation and acetylation of lysine residues in the C-terminal domain (CTD) of RNA polymerase II.
    Voss K; Forné I; Descostes N; Hintermair C; Schüller R; Maqbool MA; Heidemann M; Flatley A; Imhof A; Gut M; Gut I; Kremmer E; Andrau JC; Eick D
    Transcription; 2015; 6(5):91-101. PubMed ID: 26566685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly(A) site choice and Pol2 CTD Serine-5 status govern lncRNA control of phosphate-responsive
    Sanchez AM; Shuman S; Schwer B
    RNA; 2018 Feb; 24(2):237-250. PubMed ID: 29122971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1.
    Schwer B; Ghosh A; Sanchez AM; Lima CD; Shuman S
    RNA; 2015 Jun; 21(6):1135-46. PubMed ID: 25883047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human SCP4 is a chromatin-associated CTD phosphatase and exhibits the dynamic translocation during erythroid differentiation.
    Wani S; Sugita A; Ohkuma Y; Hirose Y
    J Biochem; 2016 Aug; 160(2):111-20. PubMed ID: 26920047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells.
    Descostes N; Heidemann M; Spinelli L; Schüller R; Maqbool MA; Fenouil R; Koch F; Innocenti C; Gut M; Gut I; Eick D; Andrau JC
    Elife; 2014 May; 3():e02105. PubMed ID: 24842994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human RNA polymerase II-associated protein 2 (RPAP2) interacts directly with the RNA polymerase II subunit Rpb6 and participates in pre-mRNA 3'-end formation.
    Wani S; Hirose Y; Ohkuma Y
    Drug Discov Ther; 2014 Dec; 8(6):255-61. PubMed ID: 25639305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit.
    Zhang J; Corden JL
    J Biol Chem; 1991 Feb; 266(4):2297-302. PubMed ID: 1989983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A combinatorial view of old and new RNA polymerase II modifications.
    Lyons DE; McMahon S; Ott M
    Transcription; 2020 Apr; 11(2):66-82. PubMed ID: 32401151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic screen for suppression of transcriptional interference identifies a gain-of-function mutation in Pol2 termination factor Seb1.
    Schwer B; Garg A; Jacewicz A; Shuman S
    Proc Natl Acad Sci U S A; 2021 Aug; 118(33):. PubMed ID: 34389684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7.
    Chapman RD; Heidemann M; Albert TK; Mailhammer R; Flatley A; Meisterernst M; Kremmer E; Eick D
    Science; 2007 Dec; 318(5857):1780-2. PubMed ID: 18079404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How an mRNA capping enzyme reads distinct RNA polymerase II and Spt5 CTD phosphorylation codes.
    Doamekpor SK; Sanchez AM; Schwer B; Shuman S; Lima CD
    Genes Dev; 2014 Jun; 28(12):1323-36. PubMed ID: 24939935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.