These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. JARID2 Functions as a Tumor Suppressor in Myeloid Neoplasms by Repressing Self-Renewal in Hematopoietic Progenitor Cells. Celik H; Koh WK; Kramer AC; Ostrander EL; Mallaney C; Fisher DAC; Xiang J; Wilson WC; Martens A; Kothari A; Fishberger G; Tycksen E; Karpova D; Duncavage EJ; Lee Y; Oh ST; Challen GA Cancer Cell; 2018 Nov; 34(5):741-756.e8. PubMed ID: 30423295 [TBL] [Abstract][Full Text] [Related]
4. A Humanized Animal Model Predicts Clonal Evolution and Therapeutic Vulnerabilities in Myeloproliferative Neoplasms. Celik H; Krug E; Zhang CR; Han W; Issa N; Koh WK; Bjeije H; Kukhar O; Allen M; Li T; Fisher DAC; Fowles JS; Wong TN; Stubbs MC; Koblish HK; Oh ST; Challen GA Cancer Discov; 2021 Dec; 11(12):3126-3141. PubMed ID: 34193440 [TBL] [Abstract][Full Text] [Related]
5. Genomic aberrations of myeloproliferative and myelodysplastic/myeloproliferative neoplasms in chronic phase and during disease progression. Hahm C; Huh HJ; Mun YC; Seong CM; Chung WS; Huh J Int J Lab Hematol; 2015 Apr; 37(2):181-9. PubMed ID: 24845343 [TBL] [Abstract][Full Text] [Related]
6. What are the molecular mechanisms driving the switch from MPNs to leukemia? Wang X; Hoffman R Best Pract Res Clin Haematol; 2021 Mar; 34(1):101254. PubMed ID: 33762108 [TBL] [Abstract][Full Text] [Related]
8. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs). Dunbar A; Nazir A; Levine R Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953 [TBL] [Abstract][Full Text] [Related]
9. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Benton CB; Boddu PC; DiNardo CD; Bose P; Wang F; Assi R; Pemmaraju N; Kc D; Pierce S; Patel K; Konopleva M; Ravandi F; Garcia-Manero G; Kadia TM; Cortes J; Kantarjian HM; Andreeff M; Verstovsek S Cancer; 2019 Jun; 125(11):1855-1866. PubMed ID: 30811597 [TBL] [Abstract][Full Text] [Related]
10. JAK2 V617F-positive acute myeloid leukaemia (AML): a comparison between de novo AML and secondary AML transformed from an underlying myeloproliferative neoplasm. A study from the Bone Marrow Pathology Group. Aynardi J; Manur R; Hess PR; Chekol S; Morrissette JJD; Babushok D; Hexner E; Rogers HJ; Hsi ED; Margolskee E; Orazi A; Hasserjian R; Bagg A Br J Haematol; 2018 Jul; 182(1):78-85. PubMed ID: 29767839 [TBL] [Abstract][Full Text] [Related]
11. Myeloid neoplasms with isolated isochromosome 17q represent a clinicopathologic entity associated with myelodysplastic/myeloproliferative features, a high risk of leukemic transformation, and wild-type TP53. Kanagal-Shamanna R; Bueso-Ramos CE; Barkoh B; Lu G; Wang S; Garcia-Manero G; Vadhan-Raj S; Hoehn D; Medeiros LJ; Yin CC Cancer; 2012 Jun; 118(11):2879-88. PubMed ID: 22038701 [TBL] [Abstract][Full Text] [Related]
13. Ratio of stemness to interferon signalling as a biomarker and therapeutic target of myeloproliferative neoplasm progression to acute myeloid leukaemia. de Castro FA; Mehdipour P; Chakravarthy A; Ettayebi I; Loo Yau H; Medina TS; Marhon SA; de Almeida FC; Bianco TM; Arruda AGF; Devlin R; de Figueiredo-Pontes LL; Chahud F; da Costa Cacemiro M; Minden MD; Gupta V; De Carvalho DD Br J Haematol; 2024 Jan; 204(1):206-220. PubMed ID: 37726227 [TBL] [Abstract][Full Text] [Related]
14. [Clinical characteristics and prognostic factors of patients with Philadelphia-negative myeloproliferative neoplasm accelerated/blast phase]. Yan X; Qin TJ; Li B; Qu SQ; Pan LJ; Li FH; Liu NN; Xiao ZJ; Xu ZF Zhonghua Xue Ye Xue Za Zhi; 2023 Apr; 44(4):276-283. PubMed ID: 37356995 [No Abstract] [Full Text] [Related]
15. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment. Koyama S; Akbay EA; Li YY; Aref AR; Skoulidis F; Herter-Sprie GS; Buczkowski KA; Liu Y; Awad MM; Denning WL; Diao L; Wang J; Parra-Cuentas ER; Wistuba II; Soucheray M; Thai T; Asahina H; Kitajima S; Altabef A; Cavanaugh JD; Rhee K; Gao P; Zhang H; Fecci PE; Shimamura T; Hellmann MD; Heymach JV; Hodi FS; Freeman GJ; Barbie DA; Dranoff G; Hammerman PS; Wong KK Cancer Res; 2016 Mar; 76(5):999-1008. PubMed ID: 26833127 [TBL] [Abstract][Full Text] [Related]
16. Accelerated and blast phase myeloproliferative neoplasms. Saliba AN; Gangat N Best Pract Res Clin Haematol; 2022 Jun; 35(2):101379. PubMed ID: 36333070 [TBL] [Abstract][Full Text] [Related]
17. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms. Sharma V; Wright KL; Epling-Burnette PK; Reuther GW Front Immunol; 2020; 11():604142. PubMed ID: 33329600 [TBL] [Abstract][Full Text] [Related]
18. Advanced forms of MPNs are accompanied by chromosomal abnormalities that lead to dysregulation of TP53. Marcellino BK; Hoffman R; Tripodi J; Lu M; Kosiorek H; Mascarenhas J; Rampal RK; Dueck A; Najfeld V Blood Adv; 2018 Dec; 2(24):3581-3589. PubMed ID: 30563882 [TBL] [Abstract][Full Text] [Related]
19. MLL-PTD in a 13-year-old patient with blast phase myeloproliferative neoplasm: A case report. He Z; Wang B; Chen L; Huang Y; Wang H; Yang M; Xiao X; Lu Y; Chen J; Wu Y Medicine (Baltimore); 2018 Nov; 97(46):e13220. PubMed ID: 30431598 [TBL] [Abstract][Full Text] [Related]
20. Mutational landscape of blast phase myeloproliferative neoplasms (MPN-BP) and antecedent MPN. Pasca S; Chifotides HT; Verstovsek S; Bose P Int Rev Cell Mol Biol; 2022; 366():83-124. PubMed ID: 35153007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]