These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
571 related articles for article (PubMed ID: 33579839)
1. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach. Yang D; Hong KS J Alzheimers Dis; 2021; 80(2):647-663. PubMed ID: 33579839 [TBL] [Abstract][Full Text] [Related]
2. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784 [TBL] [Abstract][Full Text] [Related]
3. Detection of Mild Cognitive Impairment Using Convolutional Neural Network: Temporal-Feature Maps of Functional Near-Infrared Spectroscopy. Yang D; Huang R; Yoo SH; Shin MJ; Yoon JA; Shin YI; Hong KS Front Aging Neurosci; 2020; 12():141. PubMed ID: 32508627 [TBL] [Abstract][Full Text] [Related]
4. Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process. Feng W; Halm-Lutterodt NV; Tang H; Mecum A; Mesregah MK; Ma Y; Li H; Zhang F; Wu Z; Yao E; Guo X Int J Neural Syst; 2020 Jun; 30(6):2050032. PubMed ID: 32498641 [TBL] [Abstract][Full Text] [Related]
5. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
6. Diagnosis of Mild Cognitive Impairment Using Cognitive Tasks: A Functional Near-Infrared Spectroscopy Study. Yoo SH; Woo SW; Shin MJ; Yoon JA; Shin YI; Hong KS Curr Alzheimer Res; 2020; 17(13):1145-1160. PubMed ID: 33583382 [TBL] [Abstract][Full Text] [Related]
7. A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients. Sheng J; Wang B; Zhang Q; Liu Q; Ma Y; Liu W; Shao M; Chen B Behav Brain Res; 2019 Jun; 365():210-221. PubMed ID: 30836158 [TBL] [Abstract][Full Text] [Related]
9. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A; Behav Brain Res; 2017 Mar; 322(Pt B):339-350. PubMed ID: 27345822 [TBL] [Abstract][Full Text] [Related]
10. Siamese Graph Convolutional Network quantifies increasing structure-function discrepancy over the cognitive decline continuum. Gamgam G; Yıldırım Z; Kabakçıoğlu A; Gurvit H; Demiralp T; Acar B Comput Methods Programs Biomed; 2024 Sep; 254():108290. PubMed ID: 38954916 [TBL] [Abstract][Full Text] [Related]
11. Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations. Wee CY; Liu C; Lee A; Poh JS; Ji H; Qiu A; Neuroimage Clin; 2019; 23():101929. PubMed ID: 31491832 [TBL] [Abstract][Full Text] [Related]
13. Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease. Bron EE; Klein S; Papma JM; Jiskoot LC; Venkatraghavan V; Linders J; Aalten P; De Deyn PP; Biessels GJ; Claassen JAHR; Middelkoop HAM; Smits M; Niessen WJ; van Swieten JC; van der Flier WM; Ramakers IHGB; van der Lugt A; ; Neuroimage Clin; 2021; 31():102712. PubMed ID: 34118592 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Neural Degeneration Biomarkers in the Prefrontal Cortex for Early Identification of Patients With Mild Cognitive Impairment: An fNIRS Study. Yang D; Hong KS; Yoo SH; Kim CS Front Hum Neurosci; 2019; 13():317. PubMed ID: 31551741 [TBL] [Abstract][Full Text] [Related]
15. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Chen X; Zhang H; Zhang L; Shen C; Lee SW; Shen D Hum Brain Mapp; 2017 Oct; 38(10):5019-5034. PubMed ID: 28665045 [TBL] [Abstract][Full Text] [Related]
16. A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks. Ramzan F; Khan MUG; Rehmat A; Iqbal S; Saba T; Rehman A; Mehmood Z J Med Syst; 2019 Dec; 44(2):37. PubMed ID: 31853655 [TBL] [Abstract][Full Text] [Related]
17. Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks. Basaia S; Agosta F; Wagner L; Canu E; Magnani G; Santangelo R; Filippi M; Neuroimage Clin; 2019; 21():101645. PubMed ID: 30584016 [TBL] [Abstract][Full Text] [Related]
18. Classification of Mild Cognitive Impairment Using Functional Near-Infrared Spectroscopy-Derived Biomarkers With Convolutional Neural Networks. Park JH Psychiatry Investig; 2024 Mar; 21(3):294-299. PubMed ID: 38569587 [TBL] [Abstract][Full Text] [Related]
19. Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer's Disease. Fang C; Li C; Cabrerizo M; Barreto A; Andrian J; Rishe N; Loewenstein D; Duara R; Adjouadi M Int J Neural Syst; 2018 Oct; 28(8):1850017. PubMed ID: 29793369 [TBL] [Abstract][Full Text] [Related]
20. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease. Forouzannezhad P; Abbaspour A; Fang C; Cabrerizo M; Loewenstein D; Duara R; Adjouadi M J Neurosci Methods; 2019 Apr; 317():121-140. PubMed ID: 30593787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]