BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33580151)

  • 1. Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties.
    Wei F; Ito K; Sakata K; Asakura T; Date Y; Kikuchi J
    Sci Rep; 2021 Feb; 11(1):3766. PubMed ID: 33580151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explore the relationship between fish community and environmental factors by machine learning techniques.
    Hu JH; Tsai WP; Cheng ST; Chang FJ
    Environ Res; 2020 May; 184():109262. PubMed ID: 32087440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling native fish richness to evaluate the effects of hydromorphological changes and river restoration (Júcar River Basin, Spain).
    Olaya-Marín EJ; Martínez-Capel F; Costa RM; Alcaraz-Hernández JD
    Sci Total Environ; 2012 Dec; 440():95-105. PubMed ID: 23031292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages.
    Colin N; Villéger S; Wilkes M; de Sostoa A; Maceda-Veiga A
    Sci Total Environ; 2018 Jun; 625():861-871. PubMed ID: 29306829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing Potential Conservation and Restoration Areas of Freshwater Fish Fauna in the Indian River Basins.
    Bhatt JP; Manish K; Mehta R; Pandit MK
    Environ Manage; 2016 May; 57(5):1098-111. PubMed ID: 26872885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the natural and anthropogenic influences on basin-wide fish species richness.
    Cheng ST; Herricks EE; Tsai WP; Chang FJ
    Sci Total Environ; 2016 Dec; 572():825-836. PubMed ID: 27592326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected fish diversity gradients in the Amazon basin.
    Oberdorff T; Dias MS; Jézéquel C; Albert JS; Arantes CC; Bigorne R; Carvajal-Valleros FM; De Wever A; Frederico RG; Hidalgo M; Hugueny B; Leprieur F; Maldonado M; Maldonado-Ocampo J; Martens K; Ortega H; Sarmiento J; Tedesco PA; Torrente-Vilara G; Winemiller KO; Zuanon J
    Sci Adv; 2019 Sep; 5(9):eaav8681. PubMed ID: 31535018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reserve network planning for fishes in the middle and lower Yangtze River basin by systematic conservation approaches.
    Huang X; Li F; Chen J
    Sci China Life Sci; 2016 Mar; 59(3):312-24. PubMed ID: 26749039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifaceted biodiversity measurements reveal incongruent conservation priorities for rivers in the upper reach and lakes in the middle-lower reach of the largest river-floodplain ecosystem in China.
    Jiang Z; Dai B; Wang C; Xiong W
    Sci Total Environ; 2020 Oct; 739():140380. PubMed ID: 32758978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model selection and assessment for multi-species occupancy models.
    Broms KM; Hooten MB; Fitzpatrick RM
    Ecology; 2016 Jul; 97(7):1759-1770. PubMed ID: 27859174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fish diversity and selection of taxa for conservation in the Salween and Irrawaddy Rivers, Southeast Asia.
    Zhou W; Li X
    Sci Rep; 2024 Jan; 14(1):2393. PubMed ID: 38287045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating abundance and functional traits reveals new global hotspots of fish diversity.
    Stuart-Smith RD; Bates AE; Lefcheck JS; Duffy JE; Baker SC; Thomson RJ; Stuart-Smith JF; Hill NA; Kininmonth SJ; Airoldi L; Becerro MA; Campbell SJ; Dawson TP; Navarrete SA; Soler GA; Strain EM; Willis TJ; Edgar GJ
    Nature; 2013 Sep; 501(7468):539-42. PubMed ID: 24067714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ability of machine learning models to identify preferred habitat traits of a small indigenous fish (Chanda nama) in a large river of peninsular India.
    Raman RK; Das AK; Manna RK; Sahu SK; Das BK
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):16499-16509. PubMed ID: 36184703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and environmental drivers of fish-community structure in tropical streams from two contrasting regions in India.
    Mondal R; Bhat A
    PLoS One; 2020; 15(4):e0227354. PubMed ID: 32271767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of River Fragmentation and Implications for the Conservation of Migratory Fish in Southeastern Brazil.
    Zambaldi L; Pompeu PS
    Environ Manage; 2020 May; 65(5):702-709. PubMed ID: 32086549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can data from disparate long-term fish monitoring programs be used to increase our understanding of regional and continental trends in large river assemblages?
    Counihan TD; Waite IR; Casper AF; Ward DL; Sauer JS; Irwin ER; Chapman CG; Ickes BS; Paukert CP; Kosovich JJ; Bayer JM
    PLoS One; 2018; 13(1):e0191472. PubMed ID: 29364953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of loss of lateral hydrological connectivity on fish functional diversity.
    Liu X; Wang H
    Conserv Biol; 2018 Dec; 32(6):1336-1345. PubMed ID: 29802749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that niche specialization explains species-energy relationships in lake fish communities.
    Mason NW; Irz P; Lanoiselée C; Mouillot D; Argillier C
    J Anim Ecol; 2008 Mar; 77(2):285-96. PubMed ID: 18179548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of fish community structure as a measure of ecological degradation: a case study in two tropical rivers of India.
    Das SK; Chakrabarty D
    Biosystems; 2007; 90(1):188-96. PubMed ID: 17023110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.
    Lorion CM; Kennedy BP
    Ecol Appl; 2009 Mar; 19(2):468-79. PubMed ID: 19323203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.