These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 33580230)

  • 21. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing.
    Liu B; Chen S; Rose A; Chen D; Cao F; Zwinderman M; Kiemel D; Aïssi M; Dekker FJ; Haisma HJ
    Nucleic Acids Res; 2020 Jan; 48(2):517-532. PubMed ID: 31799598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An adenine base editor with expanded targeting scope using SpCas9-NGv1 in rice.
    Negishi K; Kaya H; Abe K; Hara N; Saika H; Toki S
    Plant Biotechnol J; 2019 Aug; 17(8):1476-1478. PubMed ID: 30959555
    [No Abstract]   [Full Text] [Related]  

  • 24. A CRISPR Path to Cutting-Edge Materials.
    Chen M; Luo D
    N Engl J Med; 2020 Jan; 382(1):85-88. PubMed ID: 31893521
    [No Abstract]   [Full Text] [Related]  

  • 25. Cas9 Ribonucleoprotein Complex Delivery: Methods and Applications for Neuroinflammation.
    Campbell LA; Richie CT; Maggirwar NS; Harvey BK
    J Neuroimmune Pharmacol; 2019 Dec; 14(4):565-577. PubMed ID: 31172397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted base editing in rice with CRISPR/ScCas9 system.
    Wang M; Xu Z; Gosavi G; Ren B; Cao Y; Kuang Y; Zhou C; Spetz C; Yan F; Zhou X; Zhou H
    Plant Biotechnol J; 2020 Aug; 18(8):1645-1647. PubMed ID: 31916673
    [No Abstract]   [Full Text] [Related]  

  • 27. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis.
    Zhao L; Huang J; Fan Y; Li J; You T; He S; Xiao G; Chen D
    Ann Rheum Dis; 2019 May; 78(5):676-682. PubMed ID: 30842121
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Bombyx genome editing via Cas9 ribonucleoprotein injection.
    Jia L; Ma SY; Zhang T; Xing WQ; Liu Y; Li YF; Chen XX; Xia QY
    Insect Sci; 2019 Dec; 26(6):1059-1062. PubMed ID: 30084531
    [No Abstract]   [Full Text] [Related]  

  • 29. CRISPR-Cas immunity, DNA repair and genome stability.
    Cubbon A; Ivancic-Bace I; Bolt EL
    Biosci Rep; 2018 Oct; 38(5):. PubMed ID: 30209206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A New Class of Medicines through DNA Editing.
    Porteus MH
    N Engl J Med; 2019 Mar; 380(10):947-959. PubMed ID: 30855744
    [No Abstract]   [Full Text] [Related]  

  • 31. The final cut: Cas9 editing.
    Taylor DW
    Nat Struct Mol Biol; 2019 Aug; 26(8):669-670. PubMed ID: 31285603
    [No Abstract]   [Full Text] [Related]  

  • 32. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The kill-switch for CRISPR that could make gene-editing safer.
    Dolgin E
    Nature; 2020 Jan; 577(7790):308-310. PubMed ID: 31942057
    [No Abstract]   [Full Text] [Related]  

  • 34. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.
    Zhou XX; Zou X; Chung HK; Gao Y; Liu Y; Qi LS; Lin MZ
    ACS Chem Biol; 2018 Feb; 13(2):443-448. PubMed ID: 28938067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing.
    Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK
    Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient C-to-T and A-to-G base editing in a Populus hybrid.
    Li G; Sretenovic S; Eisenstein E; Coleman G; Qi Y
    Plant Biotechnol J; 2021 Jun; 19(6):1086-1088. PubMed ID: 33742755
    [No Abstract]   [Full Text] [Related]  

  • 38. What to Expect When Expecting CRISPR Baby Number Four.
    Scott CT; Selin C
    Am J Bioeth; 2019 Mar; 19(3):7-9. PubMed ID: 30896351
    [No Abstract]   [Full Text] [Related]  

  • 39. Enlarged DNA unwinding by Nme2Cas9 permits a broadened base editing window beyond the protospacer.
    Chen Z; Li X; Zhang Q; Sun W; Song X; Zhang X; Huang X; Sun B
    Sci China Life Sci; 2024 Feb; 67(2):424-427. PubMed ID: 37606848
    [No Abstract]   [Full Text] [Related]  

  • 40. Gene Editing Approaches against Viral Infections and Strategy to Prevent Occurrence of Viral Escape.
    White MK; Hu W; Khalili K
    PLoS Pathog; 2016 Dec; 12(12):e1005953. PubMed ID: 27930735
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.