BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33580348)

  • 1. Novel deep learning-based noise reduction technique for prostate magnetic resonance imaging.
    Wang X; Ma J; Bhosale P; Ibarra Rovira JJ; Qayyum A; Sun J; Bayram E; Szklaruk J
    Abdom Radiol (NY); 2021 Jul; 46(7):3378-3386. PubMed ID: 33580348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality.
    Lee KL; Kessler DA; Dezonie S; Chishaya W; Shepherd C; Carmo B; Graves MJ; Barrett T
    Eur J Radiol; 2023 Sep; 166():111017. PubMed ID: 37541181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quality Comparison of 3 Tesla multiparametric MRI of the prostate using a flexible surface receiver coil versus conventional surface coil plus endorectal coil setup.
    Ullrich T; Kohli MD; Ohliger MA; Magudia K; Arora SS; Barrett T; Bittencourt LK; Margolis DJ; Schimmöller L; Turkbey B; Westphalen AC
    Abdom Radiol (NY); 2020 Dec; 45(12):4260-4270. PubMed ID: 32696213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T2- and diffusion-weighted magnetic resonance imaging at 3T for the detection of prostate cancer with and without endorectal coil: An intraindividual comparison of image quality and diagnostic performance.
    Baur AD; Daqqaq T; Wagner M; Maxeiner A; Huppertz A; Renz D; Hamm B; Fischer T; Durmus T
    Eur J Radiol; 2016 Jun; 85(6):1075-84. PubMed ID: 27161055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostate MRI using an external phased array wearable pelvic coil at 3T: comparison with an endorectal coil.
    O'Donohoe RL; Dunne RM; Kimbrell V; Tempany CM
    Abdom Radiol (NY); 2019 Mar; 44(3):1062-1069. PubMed ID: 30324501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-accelerated T2-weighted imaging of the prostate: Impact of further acceleration with lower spatial resolution on image quality.
    Kim EH; Choi MH; Lee YJ; Han D; Mostapha M; Nickel D
    Eur J Radiol; 2021 Dec; 145():110012. PubMed ID: 34753082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy.
    Park JC; Park KJ; Park MY; Kim MH; Kim JK
    J Magn Reson Imaging; 2022 Jun; 55(6):1735-1744. PubMed ID: 34773449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging of prostate cancer: comparison of image quality using endorectal and pelvic phased array coils.
    Husband JE; Padhani AR; MacVicar AD; Revell P
    Clin Radiol; 1998 Sep; 53(9):673-81. PubMed ID: 9766721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical comparison between a currently available single-loop and an investigational dual-channel endorectal receive coil for prostate magnetic resonance imaging: a feasibility study at 1.5 and 3 T.
    Vos EK; Sambandamurthy S; Kamel M; McKenney R; van Uden MJ; Hoeks CM; Yakar D; Scheenen TW; Fütterer JJ
    Invest Radiol; 2014 Jan; 49(1):15-22. PubMed ID: 24019020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated T2-Weighted TSE Imaging of the Prostate Using Deep Learning Image Reconstruction: A Prospective Comparison with Standard T2-Weighted TSE Imaging.
    Gassenmaier S; Afat S; Nickel MD; Mostapha M; Herrmann J; Almansour H; Nikolaou K; Othman AE
    Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Reconstruction of Diffusion-weighted MRI Improves Image Quality for Prostatic Imaging.
    Ueda T; Ohno Y; Yamamoto K; Murayama K; Ikedo M; Yui M; Hanamatsu S; Tanaka Y; Obama Y; Ikeda H; Toyama H
    Radiology; 2022 May; 303(2):373-381. PubMed ID: 35103536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated diffusion-weighted imaging of the prostate using deep learning image reconstruction: A retrospective comparison with standard diffusion-weighted imaging.
    Ursprung S; Herrmann J; Joos N; Weiland E; Benkert T; Almansour H; Lingg A; Afat S; Gassenmaier S
    Eur J Radiol; 2023 Aug; 165():110953. PubMed ID: 37399667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination Use of Compressed Sensing and Deep Learning for Shoulder Magnetic Resonance Imaging With Various Sequences.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Miyamoto T; Hirai T
    J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):277-283. PubMed ID: 36944152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LAVA HyperSense and deep-learning reconstruction for near-isotropic (3D) enhanced magnetic resonance enterography in patients with Crohn's disease: utility in noise reduction and image quality improvement.
    Son JH; Lee Y; Lee HJ; Lee J; Kim H; Lebel MR
    Diagn Interv Radiol; 2023 May; 29(3):437-449. PubMed ID: 37098650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance.
    Heijmink SW; Fütterer JJ; Hambrock T; Takahashi S; Scheenen TW; Huisman HJ; Hulsbergen-Van de Kaa CA; Knipscheer BC; Kiemeney LA; Witjes JA; Barentsz JO
    Radiology; 2007 Jul; 244(1):184-95. PubMed ID: 17495178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commercially Available Deep-learning-reconstruction of MR Imaging of the Knee at 1.5T Has Higher Image Quality Than Conventionally-reconstructed Imaging at 3T: A Normal Volunteer Study.
    Akai H; Yasaka K; Sugawara H; Tajima T; Akahane M; Yoshioka N; Ohtomo K; Abe O; Kiryu S
    Magn Reson Med Sci; 2023 Jul; 22(3):353-360. PubMed ID: 35811127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility artifacts and PIRADS 3 lesions in prostatic MRI: how often is the dynamic contrast-enhance sequence necessary?
    Antunes N; Vas D; Sebastia C; Salvador R; Ribal MJ; Nicolau C
    Abdom Radiol (NY); 2021 Jul; 46(7):3401-3409. PubMed ID: 33683430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head-to-head comparison of prostate MRI using an endorectal coil versus a non-endorectal coil: meta-analysis of diagnostic performance in staging T3 prostate cancer.
    Tirumani SH; Suh CH; Kim KW; Shinagare AB; Ramaiya NH; Fennessy FM
    Clin Radiol; 2020 Feb; 75(2):157.e9-157.e19. PubMed ID: 31711637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique.
    Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K
    Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.