These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33580465)

  • 21. Modeling the Effect of Primary and Secondary Twinning on Texture Evolution during Severe Plastic Deformation of a Twinning-Induced Plasticity Steel.
    Toth LS; Haase C; Allen R; Lapovok R; Molodov DA; Cherkaoui M; Kadiri HE
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29786663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires.
    Sun J; Han J; Yang Z; Liu H; Song D; Ma A; Fang L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30340344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nanostructured origin of deformation twinning.
    Yu Q; Qi L; Chen K; Mishra RK; Li J; Minor AM
    Nano Lett; 2012 Feb; 12(2):887-92. PubMed ID: 22239446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic investigation of the deformation mechanisms of a γ-TiAl single crystal.
    Jeong B; Kim J; Lee T; Kim SW; Ryu S
    Sci Rep; 2018 Oct; 8(1):15200. PubMed ID: 30315248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scale law of complex deformation transitions of nanotwins in stainless steel.
    Chen AY; Zhu LL; Sun LG; Liu JB; Wang HT; Wang XY; Yang JH; Lu J
    Nat Commun; 2019 Mar; 10(1):1403. PubMed ID: 30926796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy.
    Zhang C; Kvashnin DG; Bourgeois L; Fernando JFS; Firestein K; Sorokin PB; Fukata N; Golberg D
    Nano Lett; 2018 Nov; 18(11):7238-7246. PubMed ID: 30346785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Observation of Fracture along Twin Boundaries in Boron Carbide.
    Li P; Bu Y; Wang L; Wang C; Huang J; Tong K; Chen Y; He J; Zhao Z; Xu B; Liu Z; Gao G; Nie A; Wang H; Tian Y
    Adv Mater; 2023 Dec; 35(50):e2204375. PubMed ID: 36099908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystallography-Derived Young's Modulus and Tensile Strength of AlN Nanowires as Revealed by in Situ Transmission Electron Microscopy.
    Firestein KL; Kvashnin DG; Fernando JFS; Zhang C; Siriwardena DP; Sorokin PB; Golberg DV
    Nano Lett; 2019 Mar; 19(3):2084-2091. PubMed ID: 30786716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation.
    Kardani A; Montazeri A
    Sci Rep; 2020 Jun; 10(1):9745. PubMed ID: 32546743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of {332}〈113〉 twinning in a Ti-15Mo alloy by
    Gutierrez-Urrutia I; Li CL; Ji X; Emura S; Tsuchiya K
    Sci Technol Adv Mater; 2018; 19(1):474-483. PubMed ID: 29915624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anti-twinning in nanoscale tungsten.
    Wang J; Zeng Z; Wen M; Wang Q; Chen D; Zhang Y; Wang P; Wang H; Zhang Z; Mao SX; Zhu T
    Sci Adv; 2020 Jun; 6(23):eaay2792. PubMed ID: 32537490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation.
    Hu X; Ni Y; Zhang Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32012856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Void-assisted plasticity in Ag nanowires with a single twin structure.
    Zheng H; Wang J; Huang JY; Wang J; Mao SX
    Nanoscale; 2014 Aug; 6(16):9574-8. PubMed ID: 25004907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong Hall-Petch Type Behavior in the Elastic Strain Limit of Nanotwinned Gold Nanowires.
    Wang J; Sansoz F; Deng C; Xu G; Han G; Mao SX
    Nano Lett; 2015 Jun; 15(6):3865-70. PubMed ID: 25950984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theory of transformation-mediated twinning.
    Lu S; Sun X; Tian Y; An X; Li W; Chen Y; Zhang H; Vitos L
    PNAS Nexus; 2023 Jan; 2(1):pgac282. PubMed ID: 36712941
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Wang X; Zheng S; Deng C; Weinberger CR; Wang G; Mao SX
    Nano Lett; 2023 Jan; 23(2):514-522. PubMed ID: 36633548
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Liu Q; Zhan H; Zhu H; Liu H; Sun Z; Bell J; Bo A; Gu Y
    Nano Lett; 2019 Nov; 19(11):7742-7749. PubMed ID: 31613110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversible twinning in pure aluminum.
    Li BQ; Sui ML; Li B; Ma E; Mao SX
    Phys Rev Lett; 2009 May; 102(20):205504. PubMed ID: 19519041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension.
    Bernal RA; Aghaei A; Lee S; Ryu S; Sohn K; Huang J; Cai W; Espinosa H
    Nano Lett; 2015 Jan; 15(1):139-46. PubMed ID: 25279701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.