These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33580550)
41. Dual ring multilayer ionization chamber and theory-based correction technique for scanning proton therapy. Takayanagi T; Nihongi H; Nishiuchi H; Tadokoro M; Ito Y; Nakashima C; Fujitaka S; Umezawa M; Matsuda K; Sakae T; Terunuma T Med Phys; 2016 Jul; 43(7):4150. PubMed ID: 27370135 [TBL] [Abstract][Full Text] [Related]
42. Physical and biological impacts of collimator-scattered protons in spot-scanning proton therapy. Ueno K; Matsuura T; Hirayama S; Takao S; Ueda H; Matsuo Y; Yoshimura T; Umegaki K J Appl Clin Med Phys; 2019 Jul; 20(7):48-57. PubMed ID: 31237090 [TBL] [Abstract][Full Text] [Related]
43. Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning. Geng C; Moteabbed M; Xie Y; Schuemann J; Yock T; Paganetti H Phys Med Biol; 2016 Jan; 61(1):12-22. PubMed ID: 26605679 [TBL] [Abstract][Full Text] [Related]
44. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans. Bazalova-Carter M; Qu B; Palma B; Hårdemark B; Hynning E; Jensen C; Maxim PG; Loo BW Med Phys; 2015 May; 42(5):2615-25. PubMed ID: 25979053 [TBL] [Abstract][Full Text] [Related]
45. Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery. McAuley GA; Teran AV; Slater JD; Slater JM; Wroe AJ J Appl Clin Med Phys; 2015 Nov; 16(6):51-64. PubMed ID: 26699554 [TBL] [Abstract][Full Text] [Related]
47. The M. D. Anderson proton therapy system. Smith A; Gillin M; Bues M; Zhu XR; Suzuki K; Mohan R; Woo S; Lee A; Komaki R; Cox J; Hiramoto K; Akiyama H; Ishida T; Sasaki T; Matsuda K Med Phys; 2009 Sep; 36(9):4068-83. PubMed ID: 19810479 [TBL] [Abstract][Full Text] [Related]
48. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method. Titt U; Zheng Y; Vassiliev ON; Newhauser WD Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001 [TBL] [Abstract][Full Text] [Related]
49. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Trinkl S; Mares V; Englbrecht FS; Wilkens JJ; Wielunski M; Parodi K; Rühm W; Hillbrand M Med Phys; 2017 May; 44(5):1912-1920. PubMed ID: 28294362 [TBL] [Abstract][Full Text] [Related]
50. Measurement-based study on characterizing symmetric and asymmetric respiratory motion interplay effect on target dose distribution in the proton pencil beam scanning. Lee E; Perry D; Speth J; Zhang Y; Xiao Z; Mascia A J Appl Clin Med Phys; 2020 Apr; 21(4):59-67. PubMed ID: 32170992 [TBL] [Abstract][Full Text] [Related]
51. Development and characterization of the first proton minibeam system for single-gantry proton facility. Lin Y; Li W; Johnson D; Prezado Y; Gan GN; Gao H Med Phys; 2024 Jun; 51(6):3995-4006. PubMed ID: 38642468 [TBL] [Abstract][Full Text] [Related]
52. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Gillin MT; Sahoo N; Bues M; Ciangaru G; Sawakuchi G; Poenisch F; Arjomandy B; Martin C; Titt U; Suzuki K; Smith AR; Zhu XR Med Phys; 2010 Jan; 37(1):154-63. PubMed ID: 20175477 [TBL] [Abstract][Full Text] [Related]
54. Collimated proton pencil-beam scanning for superficial targets: impact of the order of range shifter and aperture. Bäumer C; Janson M; Timmermann B; Wulff J Phys Med Biol; 2018 Apr; 63(8):085020. PubMed ID: 29553047 [TBL] [Abstract][Full Text] [Related]
55. Time structure of pencil beam scanning proton FLASH beams measured with scintillator detectors and compared with log files. Kanouta E; Johansen JG; Kertzscher G; Sitarz MK; Sørensen BS; Poulsen PR Med Phys; 2022 Mar; 49(3):1932-1943. PubMed ID: 35076947 [TBL] [Abstract][Full Text] [Related]
56. Commissioning of a clinical pencil beam scanning proton therapy unit for ultra-high dose rates (FLASH). Nesteruk KP; Togno M; Grossmann M; Lomax AJ; Weber DC; Schippers JM; Safai S; Meer D; Psoroulas S Med Phys; 2021 Jul; 48(7):4017-4026. PubMed ID: 33963576 [TBL] [Abstract][Full Text] [Related]
57. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations. Saini J; Maes D; Egan A; Bowen SR; St James S; Janson M; Wong T; Bloch C Phys Med Biol; 2017 Sep; 62(19):7659-7681. PubMed ID: 28749373 [TBL] [Abstract][Full Text] [Related]
58. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields. Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559 [TBL] [Abstract][Full Text] [Related]
59. Effects of spot parameters in pencil beam scanning treatment planning. Kraan AC; Depauw N; Clasie B; Giunta M; Madden T; Kooy HM Med Phys; 2018 Jan; 45(1):60-73. PubMed ID: 29148575 [TBL] [Abstract][Full Text] [Related]
60. Modeling skin collimation using the electron pencil beam redefinition algorithm. Chi PC; Hogstrom KR; Starkschall G; Antolak JA; Boyd RA Med Phys; 2005 Nov; 32(11):3409-18. PubMed ID: 16370427 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]