BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33580578)

  • 1. DeepCys: Structure-based multiple cysteine function prediction method trained on deep neural network: Case study on domains of unknown functions belonging to COX2 domains.
    Nallapareddy V; Bogam S; Devarakonda H; Paliwal S; Bandyopadhyay D
    Proteins; 2021 Jul; 89(7):745-761. PubMed ID: 33580578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROSics: chemistry and proteomics of cysteine modifications in redox biology.
    Kim HJ; Ha S; Lee HY; Lee KJ
    Mass Spectrom Rev; 2015; 34(2):184-208. PubMed ID: 24916017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis.
    Lehrke M; Rump S; Heidenreich T; Wissing J; Mendel RR; Bittner F
    Biochem J; 2012 Feb; 441(3):823-32. PubMed ID: 22004669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale prediction of disulphide bridges using kernel methods, two-dimensional recursive neural networks, and weighted graph matching.
    Cheng J; Saigo H; Baldi P
    Proteins; 2006 Mar; 62(3):617-29. PubMed ID: 16320312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DiANNA: a web server for disulfide connectivity prediction.
    Ferrè F; Clote P
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W230-2. PubMed ID: 15980459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
    Fang C; Shang Y; Xu D
    Proteins; 2018 May; 86(5):592-598. PubMed ID: 29492997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MULTICOM2 open-source protein structure prediction system powered by deep learning and distance prediction.
    Wu T; Liu J; Guo Z; Hou J; Cheng J
    Sci Rep; 2021 Jun; 11(1):13155. PubMed ID: 34162922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilising cysteinyl thiol oxidation and nitrosation for proteomic analysis.
    Ratnayake S; Dias IH; Lattman E; Griffiths HR
    J Proteomics; 2013 Oct; 92():160-70. PubMed ID: 23796488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic acid post-translational modifications.
    Paulech J; Liddy KA; Engholm-Keller K; White MY; Cordwell SJ
    Mol Cell Proteomics; 2015 Mar; 14(3):609-20. PubMed ID: 25561502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The redox switch: dynamic regulation of protein function by cysteine modifications.
    Spadaro D; Yun BW; Spoel SH; Chu C; Wang YQ; Loake GJ
    Physiol Plant; 2010 Apr; 138(4):360-71. PubMed ID: 19912563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.
    Wang X; Li C; Li F; Sharma VS; Song J; Webb GI
    BMC Bioinformatics; 2019 Nov; 20(1):602. PubMed ID: 31752668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids.
    Ishida YI; Aki M; Fujiwara S; Nagahama M; Ogasawara Y
    Hum Cell; 2017 Oct; 30(4):279-289. PubMed ID: 28434171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox regulation of sirtuin-1 by S-glutathiolation.
    Zee RS; Yoo CB; Pimentel DR; Perlman DH; Burgoyne JR; Hou X; McComb ME; Costello CE; Cohen RA; Bachschmid MM
    Antioxid Redox Signal; 2010 Oct; 13(7):1023-32. PubMed ID: 20392170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.
    Wood ZA; Poole LB; Karplus PA
    Science; 2003 Apr; 300(5619):650-3. PubMed ID: 12714747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chasing cysteine oxidative modifications: proteomic tools for characterizing cysteine redox status.
    Murray CI; Van Eyk JE
    Circ Cardiovasc Genet; 2012 Oct; 5(5):591. PubMed ID: 23074338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps.
    Si D; Moritz SA; Pfab J; Hou J; Cao R; Wang L; Wu T; Cheng J
    Sci Rep; 2020 Mar; 10(1):4282. PubMed ID: 32152330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine separations profiles on protein sequences infer disulfide connectivity.
    Zhao E; Liu HL; Tsai CH; Tsai HK; Chan CH; Kao CY
    Bioinformatics; 2005 Apr; 21(8):1415-20. PubMed ID: 15585533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.