These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33580712)

  • 41. Multivariate analysis of cell culture bioprocess data--lactate consumption as process indicator.
    Le H; Kabbur S; Pollastrini L; Sun Z; Mills K; Johnson K; Karypis G; Hu WS
    J Biotechnol; 2012 Dec; 162(2-3):210-23. PubMed ID: 22974585
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzyme capacity-based genome scale modelling of CHO cells.
    Yeo HC; Hong J; Lakshmanan M; Lee DY
    Metab Eng; 2020 Jul; 60():138-147. PubMed ID: 32330653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy.
    Goudar C; Biener R; Boisart C; Heidemann R; Piret J; de Graaf A; Konstantinov K
    Metab Eng; 2010 Mar; 12(2):138-49. PubMed ID: 19896555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Maximum entropy and population heterogeneity in continuous cell cultures.
    Fernandez-de-Cossio-Diaz J; Mulet R
    PLoS Comput Biol; 2019 Feb; 15(2):e1006823. PubMed ID: 30811392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feeding tricarboxylic acid cycle intermediates improves lactate consumption and antibody production in Chinese hamster ovary cell cultures.
    Zhang X; Jiang R; Lin H; Xu S
    Biotechnol Prog; 2020 Jul; 36(4):e2975. PubMed ID: 32012447
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells.
    Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ
    Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture.
    Chong WP; Goh LT; Reddy SG; Yusufi FN; Lee DY; Wong NS; Heng CK; Yap MG; Ho YS
    Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3763-71. PubMed ID: 19902412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a shake tube-based scale-down model for perfusion cultures.
    Wolf MKF; Lorenz V; Karst DJ; Souquet J; Broly H; Morbidelli M
    Biotechnol Bioeng; 2018 Nov; 115(11):2703-2713. PubMed ID: 30039852
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Semisynthetic model calibration for monitoring glucose in mammalian cell culture with in situ near infrared spectroscopy.
    Milligan M; Lewin-Koh N; Coleman D; Arroyo A; Saucedo V
    Biotechnol Bioeng; 2014 May; 111(5):896-903. PubMed ID: 24284833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Process model comparison and transferability across bioreactor scales and modes of operation for a mammalian cell bioprocess.
    Craven S; Shirsat N; Whelan J; Glennon B
    Biotechnol Prog; 2013; 29(1):186-96. PubMed ID: 23143896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and Analytics of a Monoclonal Antibody from Chinese Hamster Ovary Cells Using an Automated Microbioreactor System.
    Velugula-Yellela SR; Powers DN; Angart P; Faustino A; Faison T; Kohnhorst C; Fratz-Berilla EJ; Agarabi CD
    J Vis Exp; 2019 May; (147):. PubMed ID: 31107445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inferring metabolic states in uncharacterized environments using gene-expression measurements.
    Rossell S; Huynen MA; Notebaart RA
    PLoS Comput Biol; 2013; 9(3):e1002988. PubMed ID: 23555222
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Batch, fed-batch, and microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized bioreactor.
    Kim BJ; Zhao T; Young L; Zhou P; Shuler ML
    Biotechnol Bioeng; 2012 Jan; 109(1):137-45. PubMed ID: 21965160
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic multiscale metabolic network modeling of Chinese hamster ovary cell metabolism integrating N-linked glycosylation in industrial biopharmaceutical manufacturing.
    Erklavec Zajec V; Novak U; Kastelic M; Japelj B; Lah L; Pohar A; Likozar B
    Biotechnol Bioeng; 2021 Jan; 118(1):397-411. PubMed ID: 32970321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential effects of bioreactor process variables and purification on the human recombinant lysosomal enzyme β-glucuronidase produced from Chinese hamster ovary cells.
    Parhiz H; Ketcham SA; Zou G; Ghosh B; Fratz-Berilla EJ; Ashraf M; Ju T; Madhavarao CN
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6081-6095. PubMed ID: 31175430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential gene expression of a feed-spiked super-producing CHO cell line.
    Reinhart D; Damjanovic L; Castan A; Ernst W; Kunert R
    J Biotechnol; 2018 Nov; 285():23-37. PubMed ID: 30157452
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On-line glucose monitoring by near infrared spectroscopy during the scale up steps of mammalian cell cultivation process development.
    Kozma B; Salgó A; Gergely S
    Bioprocess Biosyst Eng; 2019 Jun; 42(6):921-932. PubMed ID: 30806782
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of cultivation conditions in spin tubes for Chinese hamster ovary cells producing erythropoietin and the comparison of glycosylation patterns in different cultivation vessels.
    Strnad J; Brinc M; Spudić V; Jelnikar N; Mirnik L; Carman B; Kravanja Z
    Biotechnol Prog; 2010; 26(3):653-63. PubMed ID: 20544713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural-network-based identification of tissue-type plasminogen activator protein production and glycosylation in CHO cell culture under shear environment.
    Senger RS; Karim MN
    Biotechnol Prog; 2003; 19(6):1828-36. PubMed ID: 14656163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.