These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33581085)

  • 1. Biofilm development in a pilot-scale gravity sewer: Physical characteristics, microstructure, and microbial communities.
    Zan F; Guo G; Zheng T; Chen G
    Environ Res; 2021 Apr; 195():110838. PubMed ID: 33581085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of food waste addition on biofilm formation and sulfide production in a gravity sewer.
    Zan F; Liang Z; Jiang F; Dai J; Chen G
    Water Res; 2019 Jun; 157():74-82. PubMed ID: 30953857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-based succession existed in rural sewer biofilms: Bacterial communities, sulfate-reducing bacteria and methanogenic archaea, and sulfide and methane generation.
    Zheng T; Li W; Ma Y; Liu J
    Sci Total Environ; 2021 Apr; 765():144397. PubMed ID: 33385817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems.
    Auguet O; Pijuan M; Batista J; Borrego CM; Gutierrez O
    Appl Environ Microbiol; 2015 Oct; 81(20):7271-80. PubMed ID: 26253681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations.
    Li W; Zheng T; Ma Y; Liu J
    Sci Total Environ; 2019 Dec; 695():133815. PubMed ID: 31416035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms.
    Sun J; Hu S; Sharma KR; Ni BJ; Yuan Z
    Appl Environ Microbiol; 2014 Nov; 80(22):7042-52. PubMed ID: 25192994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofilm in the sediment phase of a sanitary gravity sewer.
    Chen GH; Leung DH; Hung JC
    Water Res; 2003 Jun; 37(11):2784-8. PubMed ID: 12753857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm.
    Sharma K; Derlon N; Hu S; Yuan Z
    Water Res; 2014 Feb; 49():175-85. PubMed ID: 24326022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and modeling investigations on the unexpected hydrogen sulfide rebound in a sewer receiving nitrate addition: Mechanism and solution.
    Liang Z; Wu D; Li G; Sun J; Jiang F; Li Y
    J Environ Sci (China); 2023 Mar; 125():630-640. PubMed ID: 36375945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong.
    Liang ZS; Zhang L; Wu D; Chen GH; Jiang F
    Water Res; 2019 May; 154():94-103. PubMed ID: 30776618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfide and methane production in sewer sediments.
    Liu Y; Ni BJ; Ganigué R; Werner U; Sharma KR; Yuan Z
    Water Res; 2015 Mar; 70():350-9. PubMed ID: 25543244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upstream Natural Pulsed Ventilation: A simple measure to control the sulfide and methane production in gravity sewer.
    Gao R; Zhang Z; Zhang T; Liu J; Lu J
    Sci Total Environ; 2020 Nov; 742():140579. PubMed ID: 32629266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of flow conditions on bacterial communities in sewage and greywater small diameter gravity sewer biofilms.
    Li W; Zheng T; Ma Y; Liu J
    Environ Res; 2020 Apr; 183():109289. PubMed ID: 32113173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations in activities of sewer biofilms due to ferrous and ferric iron dosing.
    Kiilerich B; Kiilerich P; Nielsen AH; Vollertsen J
    Water Sci Technol; 2018 Jul; 2017(3):845-858. PubMed ID: 30016302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.
    Ai H; Xu J; Huang W; He Q; Ni B; Wang Y
    Water Sci Technol; 2016; 73(7):1572-82. PubMed ID: 27054728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.
    Nielsen AH; Yongsiri C; Hvitved-Jacobsen T; Vollertsen J
    Water Sci Technol; 2005; 52(3):201-8. PubMed ID: 16206860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer management.
    Liang ZS; Sun J; Chau HK; Leong EI; Wu D; Chen GH; Jiang F
    Environ Int; 2019 Oct; 131():105011. PubMed ID: 31374444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm.
    Sun J; Ni BJ; Sharma KR; Wang Q; Hu S; Yuan Z
    Water Res; 2018 Feb; 129():58-65. PubMed ID: 29132122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of nitrate addition on biofilm properties and activities in rising main sewers.
    Mohanakrishnan J; Gutierrez O; Sharma KR; Guisasola A; Werner U; Meyer RL; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4225-37. PubMed ID: 19577270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.