BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 33581109)

  • 21. Post-transcriptional control of DGCR8 expression by the Microprocessor.
    Triboulet R; Chang HM; Lapierre RJ; Gregory RI
    RNA; 2009 Jun; 15(6):1005-11. PubMed ID: 19383765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autoregulatory mechanisms controlling the microprocessor.
    Triboulet R; Gregory RI
    Adv Exp Med Biol; 2011; 700():56-66. PubMed ID: 21755473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissection of the Caenorhabditis elegans Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Nguyen TA
    Nucleic Acids Res; 2023 Feb; 51(4):1512-1527. PubMed ID: 36598924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A central role for the primary microRNA stem in guiding the position and efficiency of Drosha processing of a viral pri-miRNA.
    Burke JM; Kelenis DP; Kincaid RP; Sullivan CS
    RNA; 2014 Jul; 20(7):1068-77. PubMed ID: 24854622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noncanonical processing by animal Microprocessor.
    Nguyen TL; Nguyen TD; Ngo MK; Le TN; Nguyen TA
    Mol Cell; 2023 Jun; 83(11):1810-1826.e8. PubMed ID: 37267903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cobalt(III) Protoporphyrin Activates the DGCR8 Protein and Can Compensate microRNA Processing Deficiency.
    Barr I; Weitz SH; Atkin T; Hsu P; Karayiorgou M; Gogos JA; Weiss S; Guo F
    Chem Biol; 2015 Jun; 22(6):793-802. PubMed ID: 26091172
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide identification of targets of the drosha-pasha/DGCR8 complex.
    Kadener S; Rodriguez J; Abruzzi KC; Khodor YL; Sugino K; Marr MT; Nelson S; Rosbash M
    RNA; 2009 Apr; 15(4):537-45. PubMed ID: 19223442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Ubiquitin-specific Protease USP36 Associates with the Microprocessor Complex and Regulates miRNA Biogenesis by SUMOylating DGCR8.
    Li Y; Carey TS; Feng CH; Zhu HM; Sun XX; Dai MS
    Cancer Res Commun; 2023 Mar; 3(3):459-470. PubMed ID: 36950067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic Clustering Facilitates Nuclear Processing of Suboptimal Pri-miRNA Loci.
    Shang R; Baek SC; Kim K; Kim B; Kim VN; Lai EC
    Mol Cell; 2020 Apr; 78(2):303-316.e4. PubMed ID: 32302542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partial Disturbance of Microprocessor Function in Human Stem Cells Carrying a Heterozygous Mutation in the DGCR8 Gene.
    Reé D; Fóthi Á; Varga N; Kolacsek O; Orbán TI; Apáti Á
    Genes (Basel); 2022 Oct; 13(11):. PubMed ID: 36360162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a.
    Le CT; Nguyen TL; Nguyen TD; Nguyen TA
    RNA; 2020 Dec; 26(12):1777-1786. PubMed ID: 32994184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA.
    Partin AC; Zhang K; Jeong BC; Herrell E; Li S; Chiu W; Nam Y
    Mol Cell; 2020 May; 78(3):411-422.e4. PubMed ID: 32220646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Basis for pri-miRNA Recognition by Drosha.
    Jin W; Wang J; Liu CP; Wang HW; Xu RM
    Mol Cell; 2020 May; 78(3):423-433.e5. PubMed ID: 32220645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tankyrase promotes primary precursor miRNA processing to precursor miRNA.
    Mizutani A; Seimiya H
    Biochem Biophys Res Commun; 2020 Feb; 522(4):945-951. PubMed ID: 31806370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO and NO bind to Fe(II) DiGeorge critical region 8 heme but do not restore primary microRNA processing activity.
    Hines JP; Smith AT; Jacob JP; Lukat-Rodgers GS; Barr I; Rodgers KR; Guo F; Burstyn JN
    J Biol Inorg Chem; 2016 Dec; 21(8):1021-1035. PubMed ID: 27766492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CtIP suppresses primary microRNA maturation and promotes metastasis of colon cancer cells in a xenograft mouse model.
    Ren J; Wu Y; Wang Y; Zhao Y; Li Y; Hao S; Lin L; Zhang S; Xu X; Wang H
    J Biol Chem; 2021; 296():100707. PubMed ID: 33901493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing.
    Barr I; Smith AT; Chen Y; Senturia R; Burstyn JN; Guo F
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):1919-24. PubMed ID: 22308374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing.
    Kwon SC; Baek SC; Choi YG; Yang J; Lee YS; Woo JS; Kim VN
    Mol Cell; 2019 Feb; 73(3):505-518.e5. PubMed ID: 30554947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantitative map of human primary microRNA processing sites.
    Kim K; Baek SC; Lee YY; Bastiaanssen C; Kim J; Kim H; Kim VN
    Mol Cell; 2021 Aug; 81(16):3422-3439.e11. PubMed ID: 34320405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human Microprocessor.
    Nguyen TL; Nguyen TD; Bao S; Li S; Nguyen TA
    Nucleic Acids Res; 2020 Mar; 48(5):2579-2593. PubMed ID: 31956890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.