BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 33581331)

  • 1. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli.
    Kang A; Mendez-Perez D; Goh EB; Baidoo EEK; Benites VT; Beller HR; Keasling JD; Adams PD; Mukhopadhyay A; Lee TS
    Metab Eng; 2019 Dec; 56():85-96. PubMed ID: 31499175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lepidopteran mevalonate pathway optimization in Escherichia coli efficiently produces isoprenol analogs for next-generation biofuels.
    Pang B; Li J; Eiben CB; Oksen E; Barcelos C; Chen R; Englund E; Sundstrom E; Keasling JD
    Metab Eng; 2021 Nov; 68():210-219. PubMed ID: 34673235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Geranylgeraniol Production by Metabolic Engineering and Utilization of Isoprenol as a Substrate in
    Wang J; Zhu L; Li Y; Xu S; Jiang W; Liang C; Fang Y; Chu A; Zhang L; Ding Z; Shi G
    J Agric Food Chem; 2021 Apr; 69(15):4480-4489. PubMed ID: 33823596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production.
    Kang A; George KW; Wang G; Baidoo E; Keasling JD; Lee TS
    Metab Eng; 2016 Mar; 34():25-35. PubMed ID: 26708516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production.
    Kang A; Meadows CW; Canu N; Keasling JD; Lee TS
    Metab Eng; 2017 May; 41():125-134. PubMed ID: 28389395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels.
    Zheng Y; Liu Q; Li L; Qin W; Yang J; Zhang H; Jiang X; Cheng T; Liu W; Xu X; Xian M
    Biotechnol Biofuels; 2013; 6():57. PubMed ID: 23618128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway.
    Zhang Y; Cao X; Wang J; Tang F
    Microb Cell Fact; 2022 Oct; 21(1):212. PubMed ID: 36243714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of the mevalonate pathway for enhanced isoprenoid production.
    Liao P; Hemmerlin A; Bach TJ; Chye ML
    Biotechnol Adv; 2016; 34(5):697-713. PubMed ID: 26995109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
    Navale GR; Dharne MS; Shinde SS
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):457-475. PubMed ID: 33394155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering for the high-yield production of isoprenoid-based C₅ alcohols in E. coli.
    George KW; Thompson MG; Kang A; Baidoo E; Wang G; Chan LJ; Adams PD; Petzold CJ; Keasling JD; Lee TS
    Sci Rep; 2015 Jun; 5():11128. PubMed ID: 26052683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli.
    George KW; Thompson MG; Kim J; Baidoo EEK; Wang G; Benites VT; Petzold CJ; Chan LJG; Yilmaz S; Turhanen P; Adams PD; Keasling JD; Lee TS
    Metab Eng; 2018 May; 47():60-72. PubMed ID: 29530749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing isoprenol production by systematically tuning metabolic pathways using CRISPR interference in
    Kim J; Lee TS
    Front Bioeng Biotechnol; 2023; 11():1296132. PubMed ID: 38026852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering isoprenoids production in metabolically versatile microbial host Pseudomonas putida.
    Wang X; Baidoo EEK; Kakumanu R; Xie S; Mukhopadhyay A; Lee TS
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):137. PubMed ID: 36510293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of target production in co-culture by enhancing intermediate consumption through adaptive laboratory evolution.
    Kawai R; Toya Y; Miyoshi K; Murakami M; Niide T; Horinouchi T; Maeda T; Shibai A; Furusawa C; Shimizu H
    Biotechnol Bioeng; 2022 Mar; 119(3):936-945. PubMed ID: 34914093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.
    Zhao J; Bao X; Li C; Shen Y; Hou J
    Appl Microbiol Biotechnol; 2016 May; 100(10):4561-71. PubMed ID: 26883346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae.
    Wegner SA; Chen JM; Ip SS; Zhang Y; Dugar D; Avalos JL
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34351398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.