BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 33581445)

  • 1. Belowground fungal volatiles perception in okra (Abelmoschus esculentus) facilitates plant growth under biotic stress.
    Singh J; Singh P; Vaishnav A; Ray S; Rajput RS; Singh SM; Singh HB
    Microbiol Res; 2021 May; 246():126721. PubMed ID: 33581445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii.
    Ray S; Singh V; Singh S; Sarma BK; Singh HB
    Plant Physiol Biochem; 2016 Dec; 109():430-441. PubMed ID: 27816824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii and Macrophomina phaseolina.
    A P S; Thankappan S; G K; Uthandi S
    Microbiol Res; 2020 Jun; 236():126436. PubMed ID: 32179388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of endophytic Penicillium species and Pseudomonas monteilii in inducing the systemic resistance in okra against root rotting fungi and their effect on some physiochemical properties of okra fruit.
    Urooj F; Farhat H; Tariq A; Moin S; Sohail N; Sultana V; Hameedi SF; Shams ZI; Ehteshamul-Haque S
    J Appl Microbiol; 2021 Feb; 130(2):604-616. PubMed ID: 33053259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic Uptake and Accumulation in Okra (Abelmoschus esculentus) as Affected by Different Arsenical Speciation.
    Chandra S; Saha R; Pal P
    Bull Environ Contam Toxicol; 2016 Mar; 96(3):395-400. PubMed ID: 26679322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway.
    Ray S; Mishra S; Bisen K; Singh S; Sarma BK; Singh HB
    Microbiol Res; 2018 Mar; 207():100-107. PubMed ID: 29458844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antipathogenic Activities of Volatile Organic Compounds Produced by
    Tang T; Wang F; Huang H; Xie N; Guo J; Guo X; Duan Y; Wang X; Wang Q; You J
    J Agric Food Chem; 2024 May; 72(18):10282-10294. PubMed ID: 38657235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endophytic Fungi as Potential Biocontrol Agents against
    Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of EDTA and citric acid on biochemical processes and changes in phenolic compounds profile of okra (Abelmoschus esculentus L.) under mercury stress.
    Mohammadi S; Pourakbar L; Siavash Moghaddam S; Popović-Djordjević J
    Ecotoxicol Environ Saf; 2021 Jan; 208():111607. PubMed ID: 33396127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calling from distance: attraction of soil bacteria by plant root volatiles.
    Schulz-Bohm K; Gerards S; Hundscheid M; Melenhorst J; de Boer W; Garbeva P
    ISME J; 2018 May; 12(5):1252-1262. PubMed ID: 29358736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds.
    Rajani P; Rajasekaran C; Vasanthakumari MM; Olsson SB; Ravikanth G; Uma Shaanker R
    Microbiol Res; 2021 Jan; 242():126595. PubMed ID: 33017769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of soil biofertilizers to a clayey soil contaminated with Sclerotium rolfsii can promote production, protection and nutritive status of Phaseolus vulgaris.
    Abdelhafez AA; Eid KE; El-Abeid SE; Abbas MHH; Ahmed N; Mansour RRME; Zou G; Iqbal J; Fahad S; Elkelish A; Alamri S; Siddiqui MH; Mohamed I
    Chemosphere; 2021 May; 271():129321. PubMed ID: 33434829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp.
    Li Y; Guo Q; Wei X; Xue Q; Lai H
    J Appl Microbiol; 2019 Nov; 127(5):1532-1545. PubMed ID: 31304623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatiles from soil-borne fungi affect directional growth of roots.
    Moisan K; Raaijmakers JM; Dicke M; Lucas-Barbosa D; Cordovez V
    Plant Cell Environ; 2021 Jan; 44(1):339-345. PubMed ID: 32996612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum.
    Raza W; Wang J; Wu Y; Ling N; Wei Z; Huang Q; Shen Q
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7639-50. PubMed ID: 27183998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Report of Southern Blight of Okra (Abelmoschus esculentus) Caused by Sclerotium rolfsii in Côte d'Ivoire.
    Koné D; Mohamed D; Soro S; Bolou Bi BA; Kouadio YJ; Ji P
    Plant Dis; 2010 Nov; 94(11):1379. PubMed ID: 30743629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogen suppression by microbial volatile organic compounds in soils.
    de Boer W; Li X; Meisner A; Garbeva P
    FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31265069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities.
    Singh A; Sarma BK; Upadhyay RS; Singh HB
    Microbiol Res; 2013 Jan; 168(1):33-40. PubMed ID: 22857806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose.
    Alijani Z; Amini J; Ashengroph M; Bahramnejad B
    Int J Food Microbiol; 2019 Oct; 307():108276. PubMed ID: 31408741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile organic compounds emitted by
    Lee S; Yap M; Behringer G; Hung R; Bennett JW
    Fungal Biol Biotechnol; 2016; 3():7. PubMed ID: 28955466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.