These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33581824)

  • 21. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
    Nemati S; Holder A; Razmi F; Stanley MD; Clifford GD; Buchman TG
    Crit Care Med; 2018 Apr; 46(4):547-553. PubMed ID: 29286945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review.
    Liu S; See KC; Ngiam KY; Celi LA; Sun X; Feng M
    J Med Internet Res; 2020 Jul; 22(7):e18477. PubMed ID: 32706670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A value-based deep reinforcement learning model with human expertise in optimal treatment of sepsis.
    Wu X; Li R; He Z; Yu T; Cheng C
    NPJ Digit Med; 2023 Feb; 6(1):15. PubMed ID: 36732666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superhuman performance on sepsis MIMIC-III data by distributional reinforcement learning.
    Böck M; Malle J; Pasterk D; Kukina H; Hasani R; Heitzinger C
    PLoS One; 2022; 17(11):e0275358. PubMed ID: 36327195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Reinforcement Learning for Optimal Critical Care Pain Management with Morphine using Dueling Double-Deep Q Networks.
    Lopez-Martinez D; Eschenfeldt P; Ostvar S; Ingram M; Hur C; Picard R
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3960-3963. PubMed ID: 31946739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine learning methods to improve bedside fluid responsiveness prediction in severe sepsis or septic shock: an observational study.
    Bataille B; de Selle J; Moussot PE; Marty P; Silva S; Cocquet P
    Br J Anaesth; 2021 Apr; 126(4):826-834. PubMed ID: 33461735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparing for the next COVID: Deep Reinforcement Learning trained Artificial Intelligence discovery of multi-modal immunomodulatory control of systemic inflammation in the absence of effective anti-microbials.
    Larie D; An G; Cockrell C
    bioRxiv; 2022 Feb; ():. PubMed ID: 35194613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous Action Reinforcement Learning From a Mixture of Interpretable Experts.
    Akrour R; Tateo D; Peters J
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6795-6806. PubMed ID: 34375280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children.
    Matics TJ; Sanchez-Pinto LN
    JAMA Pediatr; 2017 Oct; 171(10):e172352. PubMed ID: 28783810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Establishment and Implementation of Potential Fluid Therapy Balance Strategies for ICU Sepsis Patients Based on Reinforcement Learning.
    Su L; Li Y; Liu S; Zhang S; Zhou X; Weng L; Su M; Du B; Zhu W; Long Y
    Front Med (Lausanne); 2022; 9():766447. PubMed ID: 35492326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patient-Specific Sedation Management via Deep Reinforcement Learning.
    Eghbali N; Alhanai T; Ghassemi MM
    Front Digit Health; 2021; 3():608893. PubMed ID: 34713090
    [No Abstract]   [Full Text] [Related]  

  • 32. Guideline-informed reinforcement learning for mechanical ventilation in critical care.
    den Hengst F; Otten M; Elbers P; van Harmelen F; François-Lavet V; Hoogendoorn M
    Artif Intell Med; 2024 Jan; 147():102742. PubMed ID: 38184349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oesophageal Doppler ultrasound in the assessment of haemodynamic status of patients admitted to the medical intensive care unit with septic shock.
    Chew HC; Devanand A; Phua GC; Loo CM
    Ann Acad Med Singap; 2009 Aug; 38(8):699-703. PubMed ID: 19736574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings.
    Tang S; Wiens J
    Proc Mach Learn Res; 2021 Aug; 149():2-35. PubMed ID: 35702420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of Dry Weight Assessment in Hemodialysis Patients via Reinforcement Learning.
    Yang Z; Tian Y; Zhou T; Zhu Y; Zhang P; Chen J; Li J
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):4880-4891. PubMed ID: 35849682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction.
    Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y
    Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supervised Optimal Chemotherapy Regimen Based on Offline Reinforcement Learning.
    Shiranthika C; Chen KW; Wang CY; Yang CY; Sudantha BH; Li WF
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4763-4772. PubMed ID: 35714083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predictive Validity of Sepsis-3 Definitions and Sepsis Outcomes in Critically Ill Patients: A Cohort Study in 49 ICUs in Argentina.
    Estenssoro E; Kanoore Edul VS; Loudet CI; Osatnik J; Ríos FG; Vázquez DN; Pozo MO; Lattanzio B; Pálizas F; Klein F; Piezny D; Rubatto Birri PN; Tuhay G; Díaz A; Santamaría A; Zakalik G; Dubin A;
    Crit Care Med; 2018 Aug; 46(8):1276-1283. PubMed ID: 29742584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical Care Network in the State of Qatar.
    Hijjeh M; Al Shaikh L; Alinier G; Selwood D; Malmstrom F; Hassan IF
    Qatar Med J; 2019; 2019(2):2. PubMed ID: 31763205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Haemodynamic coherence - The relevance of fluid therapy.
    Arnemann P; Seidel L; Ertmer C
    Best Pract Res Clin Anaesthesiol; 2016 Dec; 30(4):419-427. PubMed ID: 27931645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.