BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33581825)

  • 1. A new framework for classification of multi-category hand grasps using EMG signals.
    Miften FS; Diykh M; Abdulla S; Siuly S; Green JH; Deo RC
    Artif Intell Med; 2021 Feb; 112():102005. PubMed ID: 33581825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mechatronics platform to study prosthetic hand control using EMG signals.
    Geethanjali P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial neural network EMG classifier for functional hand grasp movements prediction.
    Gandolla M; Ferrante S; Ferrigno G; Baldassini D; Molteni F; Guanziroli E; Cotti Cottini M; Seneci C; Pedrocchi A
    J Int Med Res; 2017 Dec; 45(6):1831-1847. PubMed ID: 27677300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cepstrum analysis-based classification method for hand movement surface EMG signals.
    Yavuz E; Eyupoglu C
    Med Biol Eng Comput; 2019 Oct; 57(10):2179-2201. PubMed ID: 31388900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Electromyographic Hand Gesture Signals Using Modified Fuzzy C-Means Clustering and Two-Step Machine Learning Approach.
    Jia G; Lam HK; Ma S; Yang Z; Xu Y; Xiao B
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1428-1435. PubMed ID: 32286995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage classification of electromyogram signals from hand grasps in the transverse plane.
    Thiamchoo N; Phukpattaranont P
    Comput Methods Biomech Biomed Engin; 2023 Feb; 26(2):222-234. PubMed ID: 35320032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative taxonomy of human hand grasps.
    Stival F; Michieletto S; Cognolato M; Pagello E; Müller H; Atzori M
    J Neuroeng Rehabil; 2019 Feb; 16(1):28. PubMed ID: 30770759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Complex CORDIC-based Hand Movement Recognition Design Methodology for Rehabilitation and Prosthetic Applications.
    Bhardwaj S; Ghosh D; Dutta D; Cheduluri G; Hansigida V; Nali AR; Acharyya A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent Fusion of Time-Domain Descriptors Improves EMG-based Hand Movement Recognition.
    Al Taee AA; Khushaba RN; Al-Timemy AH; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():657-661. PubMed ID: 33018073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classifications of Dynamic EMG in Hand Gesture and Unsupervised Grasp Motion Segmentation.
    Han M; Zandigohar M; Furmanek MP; Yarossi M; Schirner G; Erdogmus D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():359-364. PubMed ID: 34891309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of grasp types through principal components of DWT based EMG features.
    Kakoty NM; Hazarika SM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975398. PubMed ID: 22275601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review on electromyography based intention for upper limb control using pattern recognition for human-machine interaction.
    Asghar A; Jawaid Khan S; Azim F; Shakeel CS; Hussain A; Niazi IK
    Proc Inst Mech Eng H; 2022 May; 236(5):628-645. PubMed ID: 35118907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of virtual hand prosthesis control using an inductive tongue control system.
    Johansen D; Sebelius F; Jensen S; Bentsen B; Popović DB; Andreasen Struijk LN
    Assist Technol; 2016; 28(1):22-9. PubMed ID: 26479838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the methods of feature extraction based on electromyographic signal classification.
    Zhang X; Zhang M
    Med Biol Eng Comput; 2023 Jul; 61(7):1773-1781. PubMed ID: 36894795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The classification of movement intention through machine learning models: the identification of significant time-domain EMG features.
    Mohd Khairuddin I; Sidek SN; P P Abdul Majeed A; Mohd Razman MA; Ahmad Puzi A; Md Yusof H
    PeerJ Comput Sci; 2021; 7():e379. PubMed ID: 33817026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Intention Recognition and Sensory Feedback: Control of Robotic Prosthetic Hand Through EMG Classification and Proprioceptive Feedback Using Rule-based Haptic Device.
    Cha H; An S; Choi S; Yang S; Park S; Park S
    IEEE Trans Haptics; 2022; 15(3):560-571. PubMed ID: 35622790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Time-Domain based Feature for EMG-PR Prosthetic and Rehabilitation Application.
    Pancholi S; Jain P; Varghese A; Joshi AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5084-5087. PubMed ID: 31947002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimensionality reduction for classification of object weight from electromyography.
    Lashgari E; Maoz U
    PLoS One; 2021; 16(8):e0255926. PubMed ID: 34398924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing pattern recognition-based control for partial-hand prosthesis application.
    Earley EJ; Adewuyi AA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3574-7. PubMed ID: 25570763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.