BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33582136)

  • 1. Cholesterol stabilizes recombinant exocytic fusion pores by altering membrane bending rigidity.
    Wu L; Courtney KC; Chapman ER
    Biophys J; 2021 Apr; 120(8):1367-1377. PubMed ID: 33582136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and number of trans-SNARE complexes determine nascent fusion pore properties.
    Bao H; Das D; Courtney NA; Jiang Y; Briguglio JS; Lou X; Roston D; Cui Q; Chanda B; Chapman ER
    Nature; 2018 Feb; 554(7691):260-263. PubMed ID: 29420480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol Increases the Openness of SNARE-Mediated Flickering Fusion Pores.
    Stratton BS; Warner JM; Wu Z; Nikolaus J; Wei G; Wagnon E; Baddeley D; Karatekin E; O'Shaughnessy B
    Biophys J; 2016 Apr; 110(7):1538-1550. PubMed ID: 27074679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Transmembrane Domain of Synaptobrevin Influences Neurotransmitter Flux through Synaptic Fusion Pores.
    Chiang CW; Chang CW; Jackson MB
    J Neurosci; 2018 Aug; 38(32):7179-7191. PubMed ID: 30012692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores.
    Chang CW; Hui E; Bai J; Bruns D; Chapman ER; Jackson MB
    J Neurosci; 2015 Apr; 35(14):5772-80. PubMed ID: 25855187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion.
    Kreutzberger AJ; Kiessling V; Tamm LK
    Biophys J; 2015 Jul; 109(2):319-29. PubMed ID: 26200867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains.
    Wu Z; Auclair SM; Bello O; Vennekate W; Dudzinski NR; Krishnakumar SS; Karatekin E
    Sci Rep; 2016 Jun; 6():27287. PubMed ID: 27264104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking and fast fusion of synaptobrevin vesicles depends on the lipid compositions of the vesicle and the acceptor SNARE complex-containing target membrane.
    Domanska MK; Kiessling V; Tamm LK
    Biophys J; 2010 Nov; 99(9):2936-46. PubMed ID: 21044591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synip arrests soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent membrane fusion as a selective target membrane SNARE-binding inhibitor.
    Yu H; Rathore SS; Shen J
    J Biol Chem; 2013 Jun; 288(26):18885-93. PubMed ID: 23665562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy.
    Nikolaus J; Karatekin E
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27585113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilation of fusion pores by crowding of SNARE proteins.
    Wu Z; Bello OD; Thiyagarajan S; Auclair SM; Vennekate W; Krishnakumar SS; O'Shaughnessy B; Karatekin E
    Elife; 2017 Mar; 6():. PubMed ID: 28346138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol.
    Tong J; Borbat PP; Freed JH; Shin YK
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5141-6. PubMed ID: 19251653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolving kinetic intermediates during the regulated assembly and disassembly of fusion pores.
    Das D; Bao H; Courtney KC; Wu L; Chapman ER
    Nat Commun; 2020 Jan; 11(1):231. PubMed ID: 31932584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptobrevin transmembrane domain determines the structure and dynamics of the SNARE motif and the linker region.
    Han J; Pluhackova K; Bruns D; Böckmann RA
    Biochim Biophys Acta; 2016 Apr; 1858(4):855-65. PubMed ID: 26851777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for SNARE zippering during Ca2+-triggered exocytosis in PC12 cells.
    Matos MF; Mukherjee K; Chen X; Rizo J; Südhof TC
    Neuropharmacology; 2003 Nov; 45(6):777-86. PubMed ID: 14529716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. v-SNARE actions during Ca(2+)-triggered exocytosis.
    Kesavan J; Borisovska M; Bruns D
    Cell; 2007 Oct; 131(2):351-63. PubMed ID: 17956735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion.
    Bhalla A; Chicka MC; Tucker WC; Chapman ER
    Nat Struct Mol Biol; 2006 Apr; 13(4):323-30. PubMed ID: 16565726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers.
    Chanturiya A; Chernomordik LV; Zimmerberg J
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14423-8. PubMed ID: 9405628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exocytotic fusion pores are composed of both lipids and proteins.
    Bao H; Goldschen-Ohm M; Jeggle P; Chanda B; Edwardson JM; Chapman ER
    Nat Struct Mol Biol; 2016 Jan; 23(1):67-73. PubMed ID: 26656855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex.
    Sharma S; Lindau M
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12751-12756. PubMed ID: 30482862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.