These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33582180)

  • 1. Engineering microorganisms for the biosynthesis of dicarboxylic acids.
    Li W; Shen X; Wang J; Sun X; Yuan Q
    Biotechnol Adv; 2021; 48():107710. PubMed ID: 33582180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.
    Yin X; Li J; Shin HD; Du G; Liu L; Chen J
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):830-41. PubMed ID: 25902192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress in Metabolic Engineering of
    Ye DY; Moon JH; Jung GY
    J Agric Food Chem; 2023 Jul; 71(29):10916-10931. PubMed ID: 37458388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects.
    Gu S; Zhu F; Zhang L; Wen J
    J Agric Food Chem; 2024 Mar; 72(11):5555-5573. PubMed ID: 38442481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories.
    Zhou S; Ding N; Han R; Deng Y
    Bioresour Technol; 2023 Jul; 379():128986. PubMed ID: 37001700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering for the production of dicarboxylic acids and diamines.
    Chae TU; Ahn JH; Ko YS; Kim JW; Lee JA; Lee EH; Lee SY
    Metab Eng; 2020 Mar; 58():2-16. PubMed ID: 30905694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Strain engineering and fermentation technology for production of long-chain dicarboxylic acid: a review].
    Zhang Q; Wen Z; Zhang L; Fan Y; Li F
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4420-4431. PubMed ID: 36593186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.
    Mishra P; Lee NR; Lakshmanan M; Kim M; Kim BG; Lee DY
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):12. PubMed ID: 29560822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein and metabolic engineering for the production of organic acids.
    Liu J; Li J; Shin HD; Liu L; Du G; Chen J
    Bioresour Technol; 2017 Sep; 239():412-421. PubMed ID: 28538198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial engineering for the production of C
    Li Y; Yang S; Ma D; Song W; Gao C; Liu L; Chen X
    Nat Prod Rep; 2021 Aug; 38(8):1518-1546. PubMed ID: 33410446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli.
    Kim SK; Park YC
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):191-199. PubMed ID: 30417307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in bio-based production of dicarboxylic acids longer than C4.
    Yu JL; Qian ZG; Zhong JJ
    Eng Life Sci; 2018 Sep; 18(9):668-681. PubMed ID: 32624947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.
    Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY
    Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of microorganisms for production of aromatic compounds.
    Huccetogullari D; Luo ZW; Lee SY
    Microb Cell Fact; 2019 Feb; 18(1):41. PubMed ID: 30808357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current advance in biological production of malic acid using wild type and metabolic engineered strains.
    Dai Z; Zhou H; Zhang S; Gu H; Yang Q; Zhang W; Dong W; Ma J; Fang Y; Jiang M; Xin F
    Bioresour Technol; 2018 Jun; 258():345-353. PubMed ID: 29550171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in metabolic engineering of microorganisms for the production of monomeric C3 and C4 chemical compounds.
    Zhou S; Zhang Y; Wei Z; Park S
    Bioresour Technol; 2023 Jun; 377():128973. PubMed ID: 36972803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in microbial synthesis of bioplastic monomers.
    Liu J; Liu J; Guo L; Liu J; Chen X; Liu L; Gao C
    Adv Appl Microbiol; 2022; 119():35-81. PubMed ID: 35933117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.
    Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ
    Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of a C
    Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS
    Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common problems associated with the microbial productions of aromatic compounds and corresponding metabolic engineering strategies.
    Li M; Liu C; Yang J; Nian R; Xian M; Li F; Zhang H
    Biotechnol Adv; 2020; 41():107548. PubMed ID: 32289350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.