BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33582293)

  • 1. Light cycle phase advance as a model for jet lag reprograms the circadian rhythms of murine extraorbital lacrimal glands.
    Huang S; Jiao X; Lu D; Pei X; Qi D; Li Z
    Ocul Surf; 2021 Apr; 20():95-114. PubMed ID: 33582293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term High Fructose Intake Reprograms the Transcriptional Clock Rhythm of the Murine Extraorbital Lacrimal Gland.
    Lu D; Lin C; Jiao X; Song Z; Wang L; Gu J; Li Z
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):2038-2048. PubMed ID: 31070671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Fat Nutritional Challenge Reshapes Circadian Signatures in Murine Extraorbital Lacrimal Glands.
    Zou S; Jiao X; Liu J; Qi D; Pei X; Lu D; Huang S; Li Z
    Invest Ophthalmol Vis Sci; 2022 May; 63(5):23. PubMed ID: 35588356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type 1 diabetes mellitus impairs diurnal oscillations in murine extraorbital lacrimal glands.
    Jiao X; Lu D; Pei X; Qi D; Huang S; Song Z; Gu J; Li Z
    Ocul Surf; 2020 Jul; 18(3):438-452. PubMed ID: 32360784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep Loss Causes Dysfunction in Murine Extraorbital Lacrimal Glands.
    Huang S; Si H; Liu J; Qi D; Pei X; Lu D; Zou S; Li Z
    Invest Ophthalmol Vis Sci; 2022 Jun; 63(6):19. PubMed ID: 35731510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Extraorbital Lacrimal Gland Aging in Mice: An Integrative Analysis of the Temporal Transcriptome.
    Liu J; Si H; Huang D; Lu D; Zou S; Qi D; Pei X; Huang S; Li Z
    Invest Ophthalmol Vis Sci; 2023 Sep; 64(12):18. PubMed ID: 37695604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Reconstitution Improves Aging-Driven Lacrimal Gland Circadian Dysfunction.
    Jiao X; Pei X; Lu D; Qi D; Huang S; He S; Li Z
    Am J Pathol; 2021 Dec; 191(12):2091-2116. PubMed ID: 34428426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.
    Wood NI; McAllister CJ; Cuesta M; Aungier J; Fraenkel E; Morton AJ
    PLoS One; 2013; 8(2):e55036. PubMed ID: 23390510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors.
    Pfeffer M; Rauch A; Korf HW; von Gall C
    Chronobiol Int; 2012 May; 29(4):415-29. PubMed ID: 22489607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social jet lag impairs exercise volume and attenuates physiological and metabolic adaptations to voluntary exercise training.
    Dial MB; Malek EM; Cooper AR; Neblina GA; Vasileva NI; Hines DJ; McGinnis GR
    J Appl Physiol (1985); 2024 Apr; 136(4):996-1006. PubMed ID: 38450426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.
    Loh DH; Navarro J; Hagopian A; Wang LM; Deboer T; Colwell CS
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20824058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gestational jet lag predisposes to later-life skeletal and cardiac disease.
    Chaves I; van der Eerden B; Boers R; Boers J; Streng AA; Ridwan Y; Schreuders-Koedam M; Vermeulen M; van der Pluijm I; Essers J; Gribnau J; Reiss IKM; van der Horst GTJ
    Chronobiol Int; 2019 May; 36(5):657-671. PubMed ID: 30793958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag.
    Kiessling S; Eichele G; Oster H
    J Clin Invest; 2010 Jul; 120(7):2600-9. PubMed ID: 20577050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reentrainment of the circadian pacemaker during jet lag: East-west asymmetry and the effects of north-south travel.
    Diekman CO; Bose A
    J Theor Biol; 2018 Jan; 437():261-285. PubMed ID: 28987464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid phase adjustment of melatonin and core body temperature rhythms following a 6-h advance of the light/dark cycle in the horse.
    Murphy BA; Elliott JA; Sessions DR; Vick MM; Kennedy EL; Fitzgerald BP
    J Circadian Rhythms; 2007 Aug; 5():5. PubMed ID: 17718919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms of micturition during jet lag.
    Ito K; Yasuda M; Maeda Y; Fustin JM; Yamaguchi Y; Kono Y; Negoro H; Kanematsu A; Ogawa O; Doi M; Okamura H
    Biomed Res; 2018; 39(2):57-63. PubMed ID: 29669984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysregulation of inflammatory responses by chronic circadian disruption.
    Castanon-Cervantes O; Wu M; Ehlen JC; Paul K; Gamble KL; Johnson RL; Besing RC; Menaker M; Gewirtz AT; Davidson AJ
    J Immunol; 2010 Nov; 185(10):5796-805. PubMed ID: 20944004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scheduled meal accelerates entrainment to a 6-h phase advance by shifting central and peripheral oscillations in rats.
    Ubaldo-Reyes LM; Buijs RM; Escobar C; Ángeles-Castellanos M
    Eur J Neurosci; 2017 Aug; 46(3):1875-1886. PubMed ID: 28661071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice.
    Casiraghi LP; Oda GA; Chiesa JJ; Friesen WO; Golombek DA
    J Biol Rhythms; 2012 Feb; 27(1):59-69. PubMed ID: 22306974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.