These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33582293)

  • 1. Light cycle phase advance as a model for jet lag reprograms the circadian rhythms of murine extraorbital lacrimal glands.
    Huang S; Jiao X; Lu D; Pei X; Qi D; Li Z
    Ocul Surf; 2021 Apr; 20():95-114. PubMed ID: 33582293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term High Fructose Intake Reprograms the Transcriptional Clock Rhythm of the Murine Extraorbital Lacrimal Gland.
    Lu D; Lin C; Jiao X; Song Z; Wang L; Gu J; Li Z
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):2038-2048. PubMed ID: 31070671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Fat Nutritional Challenge Reshapes Circadian Signatures in Murine Extraorbital Lacrimal Glands.
    Zou S; Jiao X; Liu J; Qi D; Pei X; Lu D; Huang S; Li Z
    Invest Ophthalmol Vis Sci; 2022 May; 63(5):23. PubMed ID: 35588356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type 1 diabetes mellitus impairs diurnal oscillations in murine extraorbital lacrimal glands.
    Jiao X; Lu D; Pei X; Qi D; Huang S; Song Z; Gu J; Li Z
    Ocul Surf; 2020 Jul; 18(3):438-452. PubMed ID: 32360784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep Loss Causes Dysfunction in Murine Extraorbital Lacrimal Glands.
    Huang S; Si H; Liu J; Qi D; Pei X; Lu D; Zou S; Li Z
    Invest Ophthalmol Vis Sci; 2022 Jun; 63(6):19. PubMed ID: 35731510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Extraorbital Lacrimal Gland Aging in Mice: An Integrative Analysis of the Temporal Transcriptome.
    Liu J; Si H; Huang D; Lu D; Zou S; Qi D; Pei X; Huang S; Li Z
    Invest Ophthalmol Vis Sci; 2023 Sep; 64(12):18. PubMed ID: 37695604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Reconstitution Improves Aging-Driven Lacrimal Gland Circadian Dysfunction.
    Jiao X; Pei X; Lu D; Qi D; Huang S; He S; Li Z
    Am J Pathol; 2021 Dec; 191(12):2091-2116. PubMed ID: 34428426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.
    Wood NI; McAllister CJ; Cuesta M; Aungier J; Fraenkel E; Morton AJ
    PLoS One; 2013; 8(2):e55036. PubMed ID: 23390510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors.
    Pfeffer M; Rauch A; Korf HW; von Gall C
    Chronobiol Int; 2012 May; 29(4):415-29. PubMed ID: 22489607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social jet lag impairs exercise volume and attenuates physiological and metabolic adaptations to voluntary exercise training.
    Dial MB; Malek EM; Cooper AR; Neblina GA; Vasileva NI; Hines DJ; McGinnis GR
    J Appl Physiol (1985); 2024 Apr; 136(4):996-1006. PubMed ID: 38450426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.
    Loh DH; Navarro J; Hagopian A; Wang LM; Deboer T; Colwell CS
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20824058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term high fructose intake reprograms the circadian transcriptome and disrupts homeostasis in mouse extra-orbital lacrimal glands.
    Qi D; Huang D; Ba M; Xuan S; Si H; Lu D; Pei X; Zhang W; Huang S; Li Z
    Exp Eye Res; 2024 Sep; 246():110008. PubMed ID: 39025460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gestational jet lag predisposes to later-life skeletal and cardiac disease.
    Chaves I; van der Eerden B; Boers R; Boers J; Streng AA; Ridwan Y; Schreuders-Koedam M; Vermeulen M; van der Pluijm I; Essers J; Gribnau J; Reiss IKM; van der Horst GTJ
    Chronobiol Int; 2019 May; 36(5):657-671. PubMed ID: 30793958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag.
    Kiessling S; Eichele G; Oster H
    J Clin Invest; 2010 Jul; 120(7):2600-9. PubMed ID: 20577050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reentrainment of the circadian pacemaker during jet lag: East-west asymmetry and the effects of north-south travel.
    Diekman CO; Bose A
    J Theor Biol; 2018 Jan; 437():261-285. PubMed ID: 28987464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid phase adjustment of melatonin and core body temperature rhythms following a 6-h advance of the light/dark cycle in the horse.
    Murphy BA; Elliott JA; Sessions DR; Vick MM; Kennedy EL; Fitzgerald BP
    J Circadian Rhythms; 2007 Aug; 5():5. PubMed ID: 17718919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pioglitazone alleviates lacrimal gland impairments induced by high-fat diet by suppressing M1 polarization.
    Chen YQ; Shao YC; Wei RL
    J Lipid Res; 2024 Sep; 65(9):100606. PubMed ID: 39067519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian rhythms of micturition during jet lag.
    Ito K; Yasuda M; Maeda Y; Fustin JM; Yamaguchi Y; Kono Y; Negoro H; Kanematsu A; Ogawa O; Doi M; Okamura H
    Biomed Res; 2018; 39(2):57-63. PubMed ID: 29669984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulation of inflammatory responses by chronic circadian disruption.
    Castanon-Cervantes O; Wu M; Ehlen JC; Paul K; Gamble KL; Johnson RL; Besing RC; Menaker M; Gewirtz AT; Davidson AJ
    J Immunol; 2010 Nov; 185(10):5796-805. PubMed ID: 20944004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.