These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 33582437)
1. Quality evaluation of Keemun black tea by fusing data obtained from near-infrared reflectance spectroscopy and computer vision sensors. Song Y; Wang X; Xie H; Li L; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119522. PubMed ID: 33582437 [TBL] [Abstract][Full Text] [Related]
2. Highly identification of keemun black tea rank based on cognitive spectroscopy: Near infrared spectroscopy combined with feature variable selection. Ren G; Wang Y; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118079. PubMed ID: 31982655 [TBL] [Abstract][Full Text] [Related]
3. Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near-infrared spectroscopy and evolutionary algorithms. Ren G; Sun Y; Li M; Ning J; Zhang Z J Sci Food Agric; 2020 Aug; 100(10):3950-3959. PubMed ID: 32329077 [TBL] [Abstract][Full Text] [Related]
4. Rapid discrimination of quality grade of black tea based on near-infrared spectroscopy (NIRS), electronic nose (E-nose) and data fusion. Xia H; Chen W; Hu D; Miao A; Qiao X; Qiu G; Liang J; Guo W; Ma C Food Chem; 2024 May; 440():138242. PubMed ID: 38154280 [TBL] [Abstract][Full Text] [Related]
5. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system. Jin G; Wang YJ; Li M; Li T; Huang WJ; Li L; Deng WW; Ning J Food Chem; 2021 Oct; 358():129815. PubMed ID: 33915424 [TBL] [Abstract][Full Text] [Related]
6. [Rapid and Dynamic Determination Models of Amino Acids and Catechins Concentrations during the Processing Procedures of Keemun Black Tea]. Ning JM; Yan L; Zhang ZZ; Wei LD; Li LQ; Fang JT; Huang CW Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3422-6. PubMed ID: 26964222 [TBL] [Abstract][Full Text] [Related]
7. Rapid and comprehensive grade evaluation of Keemun black tea using efficient multidimensional data fusion. Li L; Chen Y; Dong S; Shen J; Cao S; Cui Q; Song Y; Ning J Food Chem X; 2023 Dec; 20():100924. PubMed ID: 38144790 [TBL] [Abstract][Full Text] [Related]
8. The characterization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L.) by near-infrared reflectance spectroscopy. Lee MS; Hwang YS; Lee J; Choung MG Food Chem; 2014 Sep; 158():351-7. PubMed ID: 24731354 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of black tea by using smartphone imaging coupled with micro-near-infrared spectrometer. Li L; Wang Y; Jin S; Li M; Chen Q; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118991. PubMed ID: 33068895 [TBL] [Abstract][Full Text] [Related]
10. A black tea quality testing method for scale production using CV and NIRS with TCN for spectral feature extraction. Liang J; Guo J; Xia H; Ma C; Qiao X Food Chem; 2025 Feb; 464(Pt 1):141567. PubMed ID: 39406146 [TBL] [Abstract][Full Text] [Related]
11. Identifying the "Dangshan" Physiological Disease of Pear Woolliness Response via Feature-Level Fusion of Near-Infrared Spectroscopy and Visual RGB Image. Chen Y; Liu L; Rao Y; Zhang X; Zhang W; Jin X Foods; 2023 Mar; 12(6):. PubMed ID: 36981105 [TBL] [Abstract][Full Text] [Related]
12. Classification Modeling Method for Near-Infrared Spectroscopy of Tobacco Based on Multimodal Convolution Neural Networks. Zhang L; Ding X; Hou R J Anal Methods Chem; 2020; 2020():9652470. PubMed ID: 32104610 [TBL] [Abstract][Full Text] [Related]
13. Identification of tea based on CARS-SWR variable optimization of visible/near-infrared spectrum. Yun L; Qing-Wei P; Jian-Cheng Y; Yan-Lin T J Sci Food Agric; 2020 Jan; 100(1):371-375. PubMed ID: 31577843 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Dianhong black tea quality using near-infrared hyperspectral imaging technology. Ren G; Wang Y; Ning J; Zhang Z J Sci Food Agric; 2021 Mar; 101(5):2135-2142. PubMed ID: 32981110 [TBL] [Abstract][Full Text] [Related]
15. Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality. Ren G; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118918. PubMed ID: 32942112 [TBL] [Abstract][Full Text] [Related]
16. Moisture content monitoring in withering leaves during black tea processing based on electronic eye and near infrared spectroscopy. Chen J; Yang C; Yuan C; Li Y; An T; Dong C Sci Rep; 2022 Dec; 12(1):20721. PubMed ID: 36456868 [TBL] [Abstract][Full Text] [Related]
17. Multivariate effects of Chinese keemun black tea grades (Camellia sinensis var. sinensis) on the phenolic composition, antioxidant, antihemolytic and cytotoxic/cytoprotection activities. Zhang L; Santos JS; Cruz TM; Marques MB; do Carmo MAV; Azevedo L; Wang Y; Granato D Food Res Int; 2019 Nov; 125():108516. PubMed ID: 31554085 [TBL] [Abstract][Full Text] [Related]
18. Study on discrimination of white tea and albino tea based on near-infrared spectroscopy and chemometrics. Chen Y; Deng J; Wang Y; Liu B; Ding J; Mao X; Zhang J; Hu H; Li J J Sci Food Agric; 2014 Mar; 94(5):1026-33. PubMed ID: 23983143 [TBL] [Abstract][Full Text] [Related]
19. Application of near-infrared reflectance spectroscopy to the simultaneous prediction of alkaloids and phenolic substances in green tea leaves. Schulz H; Engelhardt UH; Wegent A; Drews H; Lapczynski S J Agric Food Chem; 1999 Dec; 47(12):5064-7. PubMed ID: 10606573 [TBL] [Abstract][Full Text] [Related]
20. [Detection of Puccinia strii formis f. sp. tritici latent infections in wheat leaves using near infrared spectroscopy technology]. Li XL; Ma ZH; Zhao LL; Li JH; Wang HG Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jul; 34(7):1853-8. PubMed ID: 25269295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]