These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 33582536)
1. Simultaneous removal of multiple polycyclic aromatic hydrocarbons (PAHs) from urban stormwater using low-cost agricultural/industrial byproducts as sorbents. Esfandiar N; Suri R; McKenzie ER Chemosphere; 2021 Jul; 274():129812. PubMed ID: 33582536 [TBL] [Abstract][Full Text] [Related]
2. Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; Effects of co-contaminants, humic acid, salinity and pH. Esfandiar N; Suri R; McKenzie ER J Hazard Mater; 2022 Feb; 423(Pt A):126938. PubMed ID: 34474369 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of low-cost materials for sorption of hydrophobic organic pollutants in stormwater. Björklund K; Li L J Environ Manage; 2015 Aug; 159():106-114. PubMed ID: 26063514 [TBL] [Abstract][Full Text] [Related]
4. Sorption of polycyclic aromatic hydrocarbons (PAHs) to lignin: effects of hydrophobicity and temperature. Zhang M; Ahmad M; Lee SS; Xu LH; Ok YS Bull Environ Contam Toxicol; 2014 Jul; 93(1):84-8. PubMed ID: 24838935 [TBL] [Abstract][Full Text] [Related]
5. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents. Xi Z; Chen B J Environ Sci (China); 2014 Apr; 26(4):737-48. PubMed ID: 25079403 [TBL] [Abstract][Full Text] [Related]
6. Bioretention soil capacity for removing nutrients, metals, and polycyclic aromatic hydrocarbons; roles of co-contaminants, pH, salinity and dissolved organic carbon. Esfandiar N; McKenzie ER J Environ Manage; 2022 Dec; 324():116314. PubMed ID: 36166865 [TBL] [Abstract][Full Text] [Related]
7. Influence mechanism of organic matter and low-molecular-weight organic acids on the interaction between minerals and PAHs. Yuan L; Wu Y; Fan Q; Li P; Liang J; Liu YH; Ma R; Li R; Shi L Sci Total Environ; 2023 Mar; 862():160872. PubMed ID: 36521591 [TBL] [Abstract][Full Text] [Related]
8. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations. Jonker MT; Koelmans AA Environ Sci Technol; 2002 Sep; 36(17):3725-34. PubMed ID: 12322744 [TBL] [Abstract][Full Text] [Related]
9. Polymerin and lignimerin, as humic acid-like sorbents from vegetable waste, for the potential remediation of waters contaminated with heavy metals, herbicides, or polycyclic aromatic hydrocarbons. Capasso R; De Martino A J Agric Food Chem; 2010 Oct; 58(19):10283-99. PubMed ID: 20828126 [TBL] [Abstract][Full Text] [Related]
11. Sorption of organic pollutants frequently detected in stormwater: evaluation of five potential sorbents. Björklund K; Li L Environ Technol; 2018 Sep; 39(18):2335-2345. PubMed ID: 28701071 [TBL] [Abstract][Full Text] [Related]
12. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater. Kalmykova Y; Björklund K; Strömvall AM; Blom L Water Res; 2013 Mar; 47(3):1317-28. PubMed ID: 23295068 [TBL] [Abstract][Full Text] [Related]
13. Sorption of five organic compounds by polar and nonpolar microplastics. Zhao L; Rong L; Xu J; Lian J; Wang L; Sun H Chemosphere; 2020 Oct; 257():127206. PubMed ID: 32502737 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of sorbent amendments used with stormwater management practices to remove contaminants: Impacts of rainfall intensity and antecedent dry periods. Esfandiar N; Suri R; McKenzie ER Sci Total Environ; 2024 Jan; 906():167766. PubMed ID: 37848142 [TBL] [Abstract][Full Text] [Related]
15. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles. Nielsen K; Kalmykova Y; Strömvall AM; Baun A; Eriksson E Sci Total Environ; 2015 Nov; 532():103-11. PubMed ID: 26057998 [TBL] [Abstract][Full Text] [Related]
16. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications. Fu H; Wei C; Qu X; Li H; Zhu D Environ Pollut; 2018 Jan; 232():402-410. PubMed ID: 28966024 [TBL] [Abstract][Full Text] [Related]
17. Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Fries E; Zarfl C Environ Sci Pollut Res Int; 2012 May; 19(4):1296-304. PubMed ID: 22083414 [TBL] [Abstract][Full Text] [Related]
18. Partition of polycyclic aromatic hydrocarbons on organobentonites from water. Chen BL; Zhu LZ J Environ Sci (China); 2001 Apr; 13(2):129-36. PubMed ID: 11590729 [TBL] [Abstract][Full Text] [Related]
19. Sorption of polycyclic aromatic hydrocarbons on electrospun nanofibrous membranes: sorption kinetics and mechanism. Dai Y; Niu J; Yin L; Xu J; Xi Y J Hazard Mater; 2011 Sep; 192(3):1409-17. PubMed ID: 21752545 [TBL] [Abstract][Full Text] [Related]
20. Optimization of the sorption of selected polycyclic aromatic hydrocarbons by regenerable graphene wool. Adeola AO; Forbes PBC Water Sci Technol; 2019 Nov; 80(10):1931-1943. PubMed ID: 32144225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]