BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33582637)

  • 1. Uptake kinetics and accumulation of pesticides in wheat (Triticum aestivum L.): Impact of chemical and plant properties.
    Liu Q; Liu Y; Dong F; Sallach JB; Wu X; Liu X; Xu J; Zheng Y; Li Y
    Environ Pollut; 2021 Apr; 275():116637. PubMed ID: 33582637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum aestivum L.).
    Ju C; Dong S; Zhang H; Yao S; Wang F; Cao D; Xu S; Fang H; Yu Y
    Chemosphere; 2020 Jun; 248():126024. PubMed ID: 32004891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.).
    Wang Q; Zhao H; Xu L; Wang Y
    Ecotoxicol Environ Saf; 2019 Jun; 174():683-689. PubMed ID: 30878008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical factors affecting uptake and translocation of six pesticides in soil by maize (Zea mays L.).
    Wang F; Li X; Yu S; He S; Cao D; Yao S; Fang H; Yu Y
    J Hazard Mater; 2021 Mar; 405():124269. PubMed ID: 33144009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved prediction of the bioconcentration factors of organic contaminants from soils into plant/crop roots by related physicochemical parameters.
    Li Y; Chiou CT; Li H; Schnoor JL
    Environ Int; 2019 May; 126():46-53. PubMed ID: 30776749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil.
    Tao Y; Zhang S; Zhu YG; Christie P
    Environ Sci Technol; 2009 May; 43(10):3556-60. PubMed ID: 19544854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PFCA uptake and translocation in dominant wheat species (Triticum aestivum L.).
    Zhao H; Guan Y; Qu B
    Int J Phytoremediation; 2018 Jan; 20(1):68-74. PubMed ID: 28598222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and modeling of pesticides by roots and shoots of parrotfeather (Myriophyllum aquaticum).
    Turgut C
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):342-6. PubMed ID: 16305140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake Kinetics, Accumulation, and Long-Distance Transport of Organophosphate Esters in Plants: Impacts of Chemical and Plant Properties.
    Liu Q; Wang X; Yang R; Yang L; Sun B; Zhu L
    Environ Sci Technol; 2019 May; 53(9):4940-4947. PubMed ID: 30942573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings.
    Li LZ; Tu C; Peijnenburg WJGM; Luo YM
    Environ Pollut; 2017 Feb; 221():351-358. PubMed ID: 28012673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake kinetics and subcellular distribution of three classes of typical pesticides in rice plants.
    Liu J; Cheng J; Zhou C; Ma L; Chen X; Li Y; Sun X; Yan X; Geng R; Wan Q; Yu X
    Sci Total Environ; 2023 Feb; 858(Pt 2):159826. PubMed ID: 36374729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting pesticide residues in pod fruits with a modified peel-like uptake model: A green pea demonstration.
    Li Z
    Ecotoxicol Environ Saf; 2023 Oct; 264():115421. PubMed ID: 37657391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling plant uptake of organic contaminants by root vegetables: The role of diffusion, xylem, and phloem uptake routes.
    Li Z
    J Hazard Mater; 2022 Jul; 434():128911. PubMed ID: 35460996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake, Translocation, and Subcellular Distribution of Azoxystrobin in Wheat Plant ( Triticum aestivum L.).
    Ju C; Zhang H; Yao S; Dong S; Cao D; Wang F; Fang H; Yu Y
    J Agric Food Chem; 2019 Jun; 67(24):6691-6699. PubMed ID: 31135152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into Uptake, Translocation, and Transformation Mechanisms of Perfluorophosphinates and Perfluorophosphonates in Wheat (
    Zhou J; Yang Z; Liu Q; Liu Y; Liu M; Wang T; Zhu L
    Environ Sci Technol; 2020 Jan; 54(1):276-285. PubMed ID: 31795634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive sampling of diverse pesticides in water by hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membrane: Kinetics, equilibrium partitioning and field application.
    Gao X; Qin L; Li S; Jiang L; Zhou Q; Xu Y; Ma M; Chen C
    Sci Total Environ; 2023 Mar; 866():161391. PubMed ID: 36621486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant uptake of pesticides and human health: dynamic modeling of residues in wheat and ingestion intake.
    Fantke P; Charles R; de Alencastro LF; Friedrich R; Jolliet O
    Chemosphere; 2011 Nov; 85(10):1639-47. PubMed ID: 21955352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction.
    Shi GL; Lou LQ; Li DJ; Hu ZB; Cai QS
    Chemosphere; 2017 May; 175():192-199. PubMed ID: 28222373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Water to Water: Insight into the Translocation of Pesticides from Plant Rhizosphere Solution to Leaf Guttation and the Associated Ecological Risks.
    Xia B; Wang S; Li R; Dong F; Zheng Y; Li Y
    Environ Sci Technol; 2024 Apr; 58(17):7600-7608. PubMed ID: 38629313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum.
    Gong W; Jiang M; Zhang T; Zhang W; Liang G; Li B; Hu B; Han P
    Environ Pollut; 2020 Feb; 257():113499. PubMed ID: 31706771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.