These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3358282)

  • 41. Positioning and capture of cell surface-associated microtubules in epithelial tendon cells that differentiate in primary embryonic Drosophila cell cultures.
    Tucker JB; Mackie JB; Cottam DM; Rogers-Bald MM; Macintyre J; Scarborough JA; Milner MJ
    Cell Motil Cytoskeleton; 2004 Mar; 57(3):175-85. PubMed ID: 14743350
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Muscle tissue histogenesis of the lymph hearts of chick embryos].
    Markozashvili MP; Rumiantsev PP
    Tsitologiia; 1983 Oct; 25(10):1120-7. PubMed ID: 6659061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Role of the cytoskeleton in the morphological normalization of transformed cells in culture].
    Liass LA
    Biull Eksp Biol Med; 1985 Jul; 100(7):86-9. PubMed ID: 3893562
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [The reorganization of the actin cytoskeleton of nuclear erythrocytes and leukocytes in fish, frogs and birds during cell migration].
    Cherniavskikh SD; Fedorova MZ; Tkhan' VV; Kuet do K
    Tsitologiia; 2012; 54(5):412-6. PubMed ID: 22827038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The fine structure of endothelial cells of white-blooded fish Chaenocephalus aceratus.
    Smiałowska E; Kilarski W
    Z Mikrosk Anat Forsch; 1983; 97(6):967-78. PubMed ID: 6686909
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture.
    Akisaka T; Yoshida H; Suzuki R; Takama K
    Cell Tissue Res; 2008 Mar; 331(3):625-41. PubMed ID: 18087726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differentiation of myoblasts with nerve cells on microcarriers in culture.
    Shahar A; Mizrahi A; Reuveny S; Zinman T; Shainberg A
    Dev Biol Stand; 1985; 60():263-8. PubMed ID: 3899788
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cholesterol depletion by methyl-beta-cyclodextrin enhances myoblast fusion and induces the formation of myotubes with disorganized nuclei.
    Mermelstein CS; Portilho DM; Medeiros RB; Matos AR; Einicker-Lamas M; Tortelote GG; Vieyra A; Costa ML
    Cell Tissue Res; 2005 Feb; 319(2):289-97. PubMed ID: 15549398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The teleost cone cytoskeleton. Localization of actin, microtubules, and intermediate filaments.
    Nagle BW; Okamoto C; Taggart B; Burnside B
    Invest Ophthalmol Vis Sci; 1986 May; 27(5):689-701. PubMed ID: 3700018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center.
    Rumsby M; Afsari F; Stark M; Hughson E
    Glia; 2003 Apr; 42(2):118-29. PubMed ID: 12655596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The role of the buds and myoblasts in reparative regeneration of muscle fibers of the skeletal type].
    Dmitrieva EV
    Arkh Anat Gistol Embriol; 1975 Feb; 68(2):37-43. PubMed ID: 1131031
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Primary culture of chick embryo skeletal muscle on dextran microcarrier.
    Pawlowski R; Szigeti V; Loyd R; Przybylski RJ
    Eur J Cell Biol; 1984 Nov; 35(2):296-303. PubMed ID: 6083864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The shape and movement of fibroblasts in culture.
    Abercrombie M; Dunn GA; Heath JP
    Soc Gen Physiol Ser; 1977; 32():57-70. PubMed ID: 333596
    [No Abstract]   [Full Text] [Related]  

  • 54. Intracellular filament bundles in whole mounts of chick and human myoblasts extracted with triton X-100.
    Pudney J; Singer RH
    Tissue Cell; 1980; 12(4):595-612. PubMed ID: 7193921
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microtubules, microfilaments and adhesion patterns in differentiating chick retinal pigment epithelial (RPE) cells in vitro.
    Turksen K; Opas M; Aubin JE; Kalnins VI
    Exp Cell Res; 1983 Sep; 147(2):379-91. PubMed ID: 6684589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organization of filaments underneath the plasma membrane of developing chicken skeletal muscle cells in vitro revealed by the freeze-dry and rotary replica method.
    Isobe Y; Shimada Y
    Cell Tissue Res; 1986; 244(1):47-56. PubMed ID: 3698088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. First ultrastructural differentiation of myoblasts of chicken embryos: appearance of the initial filaments.
    González Santander R; Martínez Cuadrado G; Martínez Alonso J; Toledo Lobo MV
    Histol Histopathol; 1990 Apr; 5(2):231-9. PubMed ID: 2134377
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developmental reorganization of the skeletal framework and its surface lamina in fusing muscle cells.
    Fulton AB; Prives J; Farmer SR; Penman S
    J Cell Biol; 1981 Oct; 91(1):103-12. PubMed ID: 7197679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An electronmicroscopic study of the truncus ridges in chick embryos.
    Roest-Wagenaar JA
    Acta Morphol Neerl Scand; 1975 Nov; 13(3):187-200. PubMed ID: 1211224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The developmental morphology of Torpedo marmorata: electric organ--electrogenic phase.
    Fox GQ; Richardson GP
    J Comp Neurol; 1979 May; 185(2):293-315. PubMed ID: 570982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.