These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33582990)

  • 21. Plasmon-waveguide resonance spectroscopy: a new tool for investigating signal transduction by G-protein coupled receptors.
    Tollin G; Salamon Z; Cowell S; Hruby VJ
    Life Sci; 2003 Nov; 73(26):3307-11. PubMed ID: 14572873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking.
    Langelaan DN; Reddy T; Banks AW; Dellaire G; Dupré DJ; Rainey JK
    Biochim Biophys Acta; 2013 Jun; 1828(6):1471-83. PubMed ID: 23438363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biophysical characterization of G-protein coupled receptor-peptide ligand binding.
    Langelaan DN; Ngweniform P; Rainey JK
    Biochem Cell Biol; 2011 Apr; 89(2):98-105. PubMed ID: 21455262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstitution of membrane proteins: a GPCR as an example.
    Goddard AD; Dijkman PM; Adamson RJ; dos Reis RI; Watts A
    Methods Enzymol; 2015; 556():405-24. PubMed ID: 25857793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers.
    Alves ID; Salamon Z; Hruby VJ; Tollin G
    Biochemistry; 2005 Jun; 44(25):9168-78. PubMed ID: 15966741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peeking into a secret world of pore-forming toxins: membrane binding processes studied by surface plasmon resonance.
    Anderluh G; Macek P; Lakey JH
    Toxicon; 2003 Sep; 42(3):225-8. PubMed ID: 14559072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology.
    Lee TH; Hirst DJ; Aguilar MI
    Biochim Biophys Acta; 2015 Sep; 1848(9):1868-85. PubMed ID: 26009270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors.
    Serebryany E; Zhu GA; Yan EC
    Biochim Biophys Acta; 2012 Feb; 1818(2):225-33. PubMed ID: 21851807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions.
    Stahelin RV
    Mol Biol Cell; 2013 Apr; 24(7):883-6. PubMed ID: 23533209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular modeling and simulation of membrane lipid-mediated effects on GPCRs.
    Sadiq SK; Guixa-Gonzalez R; Dainese E; Pastor M; De Fabritiis G; Selent J
    Curr Med Chem; 2013; 20(1):22-38. PubMed ID: 23151000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology.
    Navratilova I; Dioszegi M; Myszka DG
    Anal Biochem; 2006 Aug; 355(1):132-9. PubMed ID: 16762304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy.
    Alves ID; Cowell SM; Salamon Z; Devanathan S; Tollin G; Hruby VJ
    Mol Pharmacol; 2004 May; 65(5):1248-57. PubMed ID: 15102953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detergent- and phospholipid-based reconstitution systems have differential effects on constitutive activity of G-protein-coupled receptors.
    Staus DP; Wingler LM; Pichugin D; Prosser RS; Lefkowitz RJ
    J Biol Chem; 2019 Sep; 294(36):13218-13223. PubMed ID: 31362983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput Fluorescence Polarization Assay to Identify Ligands Using Purified G Protein-Coupled Receptor.
    Heine P; Witt G; Gilardi A; Gribbon P; Kummer L; Plückthun A
    SLAS Discov; 2019 Oct; 24(9):915-927. PubMed ID: 30925845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of agonists, antagonists and inverse agonists to the human delta-opioid receptor produces distinctly different conformational states distinguishable by plasmon-waveguide resonance spectroscopy.
    Salamon Z; Hruby VJ; Tollin G; Cowell S
    J Pept Res; 2002 Dec; 60(6):322-8. PubMed ID: 12464110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes.
    Šakanovič A; Hodnik V; Anderluh G
    Methods Mol Biol; 2019; 2003():53-70. PubMed ID: 31218613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surveying GPCR solubilisation conditions using surface plasmon resonance.
    Navratilova IH; Aristotelous T; Bird LE; Hopkins AL
    Anal Biochem; 2018 Sep; 556():23-34. PubMed ID: 29908863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the kinetics of lipid membrane formation and the interaction of a nontoxic and a toxic amyloid with plasmon waveguide resonance.
    Harté E; Maalouli N; Shalabney A; Texier E; Berthelot K; Lecomte S; Alves ID
    Chem Commun (Camb); 2014 Apr; 50(32):4168-71. PubMed ID: 24618747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plasmon-waveguide resonance spectroscopy studies.
    Salamon Z; Lindblom G; Rilfors L; Linde K; Tollin G
    Biophys J; 2000 Mar; 78(3):1400-12. PubMed ID: 10692325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of G protein-coupled receptor-mediated cellular response involved in cytoskeletal rearrangement using surface plasmon resonance.
    Chen K; Obinata H; Izumi T
    Biosens Bioelectron; 2010 Mar; 25(7):1675-80. PubMed ID: 20044245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.