These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33583006)

  • 1. Genetic engineering to improve essential and conditionally essential amino acids in maize: transporter engineering as a reference.
    Hasan MM; Rima R
    Transgenic Res; 2021 Apr; 30(2):207-220. PubMed ID: 33583006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fortifying Horticultural Crops with Essential Amino Acids: A Review.
    Wang G; Xu M; Wang W; Galili G
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality.
    Galili G; Amir R
    Plant Biotechnol J; 2013 Feb; 11(2):211-22. PubMed ID: 23279001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.
    Guo X; Duan X; Wu Y; Cheng J; Zhang J; Zhang H; Li B
    J Agric Food Chem; 2018 Feb; 66(7):1670-1677. PubMed ID: 29394054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of amino acids and storage proteins in plants.
    Galili G; Höfgen R
    Metab Eng; 2002 Jan; 4(1):3-11. PubMed ID: 11800569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the fatty acid composition in Arabidopsis and maize seeds using a stearoyl-acyl carrier protein desaturase-1 (ZmSAD1) gene.
    Du H; Huang M; Hu J; Li J
    BMC Plant Biol; 2016 Jun; 16(1):137. PubMed ID: 27297560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric transcriptomic signatures between the cob and florets in the maize ear under optimal- and low-nitrogen conditions at silking, and functional characterization of amino acid transporters ZmAAP4 and ZmVAAT3.
    Pan X; Hasan MM; Li Y; Liao C; Zheng H; Liu R; Li X
    J Exp Bot; 2015 Oct; 66(20):6149-66. PubMed ID: 26136266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Seed-Specific Bidirectional Promoters for Metabolic Engineering of Anthocyanin-Rich Maize.
    Liu X; Li S; Yang W; Mu B; Jiao Y; Zhou X; Zhang C; Fan Y; Chen R
    Plant Cell Physiol; 2018 Oct; 59(10):1942-1955. PubMed ID: 29917151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses.
    Hartings H; Lauria M; Lazzaroni N; Pirona R; Motto M
    BMC Genomics; 2011 Jan; 12():41. PubMed ID: 21241522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.
    Maron LG; Piñeros MA; Guimarães CT; Magalhaes JV; Pleiman JK; Mao C; Shaff J; Belicuas SN; Kochian LV
    Plant J; 2010 Mar; 61(5):728-40. PubMed ID: 20003133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants.
    Guillaumie S; Goffner D; Barbier O; Martinant JP; Pichon M; Barrière Y
    BMC Plant Biol; 2008 Jun; 8():71. PubMed ID: 18582385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize.
    Vallabhaneni R; Wurtzel ET
    Plant Physiol; 2009 Jun; 150(2):562-72. PubMed ID: 19346441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize.
    Coussens G; Aesaert S; Verelst W; Demeulenaere M; De Buck S; Njuguna E; Inzé D; Van Lijsebettens M
    J Exp Bot; 2012 Jun; 63(11):4263-73. PubMed ID: 22523343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize.
    Dechorgnat J; Francis KL; Dhugga KS; Rafalski JA; Tyerman SD; Kaiser BN
    BMC Plant Biol; 2019 May; 19(1):206. PubMed ID: 31109290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZmNST3 and ZmNST4 are master switches for secondary wall deposition in maize (Zea mays L.).
    Xiao W; Yang Y; Yu J
    Plant Sci; 2018 Jan; 266():83-94. PubMed ID: 29241570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.).
    Gu R; Duan F; An X; Zhang F; von Wirén N; Yuan L
    Plant Cell Physiol; 2013 Sep; 54(9):1515-24. PubMed ID: 23832511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways.
    Tanaka Y; Ohmiya A
    Curr Opin Biotechnol; 2008 Apr; 19(2):190-7. PubMed ID: 18406131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.).
    Wang X; Shan X; Xue C; Wu Y; Su S; Li S; Liu H; Jiang Y; Zhang Y; Yuan Y
    Plant Cell Rep; 2016 Aug; 35(8):1671-86. PubMed ID: 27061906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadening Our Portfolio in the Genetic Improvement of Maize Chemical Composition.
    Wen W; Brotman Y; Willmitzer L; Yan J; Fernie AR
    Trends Genet; 2016 Aug; 32(8):459-469. PubMed ID: 27235112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intragenic modification of maize.
    Almeraya EV; Sánchez-de-Jiménez E
    J Biotechnol; 2016 Nov; 238():35-41. PubMed ID: 27641689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.