BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33583053)

  • 1. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti-cancer drug target.
    Niu H; Zhu J; Qu Q; Zhou X; Huang X; Du Z
    Proteins; 2021 Jul; 89(7):853-865. PubMed ID: 33583053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human mitochondrial pyrophosphatase: cDNA cloning and analysis of the gene in patients with mtDNA depletion syndromes.
    Curbo S; Lagier-Tourenne C; Carrozzo R; Palenzuela L; Lucioli S; Hirano M; Santorelli F; Arenas J; Karlsson A; Johansson M
    Genomics; 2006 Mar; 87(3):410-6. PubMed ID: 16300924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties.
    Kiliszek A; Rypniewski W; Rząd K; Milewski S; Gabriel I
    J Struct Biol; 2019 Mar; 205(3):26-33. PubMed ID: 30742897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPase1 encodes a novel type of inorganic pyrophosphatase.
    May A; Berger S; Hertel T; Köck M
    Biochim Biophys Acta; 2011 Feb; 1810(2):178-85. PubMed ID: 21122813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An unexpected vestigial protein complex reveals the evolutionary origins of an
    Esquirol L; Peat TS; Wilding M; Liu JW; French NG; Hartley CJ; Onagi H; Nebl T; Easton CJ; Newman J; Scott C
    J Biol Chem; 2018 May; 293(20):7880-7891. PubMed ID: 29523689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis thaliana Hcc1 is a Sco-like metallochaperone for Cu
    Llases ME; Lisa MN; Morgada MN; Giannini E; Alzari PM; Vila AJ
    FEBS J; 2020 Feb; 287(4):749-762. PubMed ID: 31348612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic pyrophosphatases of Family II-two decades after their discovery.
    Baykov AA; Anashkin VA; Salminen A; Lahti R
    FEBS Lett; 2017 Oct; 591(20):3225-3234. PubMed ID: 28986979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of glyoxysomal malate dehydrogenase (MDH3) from Saccharomyces cerevisiae.
    Moriyama S; Nishio K; Mizushima T
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):617-624. PubMed ID: 30279312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism.
    Summers EL; Cumming MH; Oulavallickal T; Roberts NJ; Arcus VL
    Protein Sci; 2017 Aug; 26(8):1627-1638. PubMed ID: 28543850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties.
    Bailleul G; Nicoll CR; Mascotti ML; Mattevi A; Fraaije MW
    J Biol Chem; 2021; 296():100221. PubMed ID: 33759784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dimeric catalytic core relates the short and long forms of ATP-phosphoribosyltransferase.
    Mittelstädt G; Jiao W; Livingstone EK; Moggré GJ; Nazmi AR; Parker EJ
    Biochem J; 2018 Jan; 475(1):247-260. PubMed ID: 29208762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into nanoRNA degradation by human Rexo2.
    Chu LY; Agrawal S; Chen YP; Yang WZ; Yuan HS
    RNA; 2019 Jun; 25(6):737-746. PubMed ID: 30926754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of inorganic pyrophosphatase from Helicobacter pylori.
    Wu CA; Lokanath NK; Kim DY; Park HJ; Hwang HY; Kim ST; Suh SW; Kim KK
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1459-64. PubMed ID: 16239722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimeric architecture of maltodextrin glucosidase (MalZ) provides insights into the substrate recognition and hydrolysis mechanism.
    Ahn WC; An Y; Song KM; Park KH; Lee SJ; Oh BH; Park JT; Woo EJ
    Biochem Biophys Res Commun; 2022 Jan; 586():49-54. PubMed ID: 34826700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the RNA 2',3'-cyclic phosphodiesterase from Deinococcus radiodurans.
    Han W; Cheng J; Zhou C; Hua Y; Zhao Y
    Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):276-280. PubMed ID: 28471359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants of lipid specificity within Ups/PRELI lipid transfer proteins.
    Miliara X; Tatsuta T; Berry JL; Rouse SL; Solak K; Chorev DS; Wu D; Robinson CV; Matthews S; Langer T
    Nat Commun; 2019 Mar; 10(1):1130. PubMed ID: 30850607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative structure analysis of the ETSi domain of ERG3 and its complex with the E74 promoter DNA sequence.
    Sharma R; Gangwar SP; Saxena AK
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):656-663. PubMed ID: 30279318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic and structural properties of ATP-dependent caprolactamase from Pseudomonas jessenii.
    Marjanovic A; Rozeboom HJ; de Vries MS; Mayer C; Otzen M; Wijma HJ; Janssen DB
    Proteins; 2021 Sep; 89(9):1079-1098. PubMed ID: 33826169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+.
    Luoto HH; Baykov AA; Lahti R; Malinen AM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1255-60. PubMed ID: 23297210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional characterization of peptidyl-tRNA hydrolase from Klebsiella pneumoniae.
    Mundra S; Pal RK; Tripathi S; Jain A; Arora A
    Biochim Biophys Acta Proteins Proteom; 2021 Jan; 1869(1):140554. PubMed ID: 33068756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.