These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33583075)

  • 41. Graph-based generative models for de Novo drug design.
    Xia X; Hu J; Wang Y; Zhang L; Liu Z
    Drug Discov Today Technol; 2019 Dec; 32-33():45-53. PubMed ID: 33386094
    [TBL] [Abstract][Full Text] [Related]  

  • 42.
    Domenico A; Nicola G; Daniela T; Fulvio C; Nicola A; Orazio N
    J Chem Inf Model; 2020 Oct; 60(10):4582-4593. PubMed ID: 32845150
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Is computer-assisted rescaffolding the future in lead generation?
    Hessler G; Baringhaus KH
    Future Med Chem; 2013 Mar; 5(3):237-9. PubMed ID: 23464513
    [No Abstract]   [Full Text] [Related]  

  • 44. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reinforced Adversarial Neural Computer for de Novo Molecular Design.
    Putin E; Asadulaev A; Ivanenkov Y; Aladinskiy V; Sanchez-Lengeling B; Aspuru-Guzik A; Zhavoronkov A
    J Chem Inf Model; 2018 Jun; 58(6):1194-1204. PubMed ID: 29762023
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep Reinforcement Learning for Multiparameter Optimization in
    Ståhl N; Falkman G; Karlsson A; Mathiason G; Boström J
    J Chem Inf Model; 2019 Jul; 59(7):3166-3176. PubMed ID: 31273995
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep learning approaches in predicting ADMET properties.
    Cáceres EL; Tudor M; Cheng AC
    Future Med Chem; 2020 Nov; 12(22):1995-1999. PubMed ID: 33124448
    [No Abstract]   [Full Text] [Related]  

  • 49. Autonomous Molecular Design: Then and Now.
    Dimitrov T; Kreisbeck C; Becker JS; Aspuru-Guzik A; Saikin SK
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):24825-24836. PubMed ID: 30908004
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The CSD Drug Subset: The Changing Chemistry and Crystallography of Small Molecule Pharmaceuticals.
    Bryant MJ; Black SN; Blade H; Docherty R; Maloney AGP; Taylor SC
    J Pharm Sci; 2019 May; 108(5):1655-1662. PubMed ID: 30615878
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ISiCLE: A Quantum Chemistry Pipeline for Establishing in Silico Collision Cross Section Libraries.
    Colby SM; Thomas DG; Nuñez JR; Baxter DJ; Glaesemann KR; Brown JM; Pirrung MA; Govind N; Teeguarden JG; Metz TO; Renslow RS
    Anal Chem; 2019 Apr; 91(7):4346-4356. PubMed ID: 30741529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep compressive autoencoder for action potential compression in large-scale neural recording.
    Wu T; Zhao W; Keefer E; Yang Z
    J Neural Eng; 2018 Dec; 15(6):066019. PubMed ID: 30215605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.
    Ma XH; Jia J; Zhu F; Xue Y; Li ZR; Chen YZ
    Comb Chem High Throughput Screen; 2009 May; 12(4):344-57. PubMed ID: 19442064
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular Generation of Focused Libraries.
    Amabilino S; Pogány P; Pickett SD; Green DVS
    J Chem Inf Model; 2020 Dec; 60(12):5699-5713. PubMed ID: 32659085
    [TBL] [Abstract][Full Text] [Related]  

  • 56. LibINVENT: Reaction-based Generative Scaffold Decoration for
    Fialková V; Zhao J; Papadopoulos K; Engkvist O; Bjerrum EJ; Kogej T; Patronov A
    J Chem Inf Model; 2022 May; 62(9):2046-2063. PubMed ID: 34460269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer.
    Liao Z; Xie L; Mamitsuka H; Zhu S
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36576008
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploiting machine learning for end-to-end drug discovery and development.
    Ekins S; Puhl AC; Zorn KM; Lane TR; Russo DP; Klein JJ; Hickey AJ; Clark AM
    Nat Mater; 2019 May; 18(5):435-441. PubMed ID: 31000803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.
    Yang X; Wang Y; Byrne R; Schneider G; Yang S
    Chem Rev; 2019 Sep; 119(18):10520-10594. PubMed ID: 31294972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.