These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33583180)
1. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies. Rastogi R; Arianfard H; Moss D; Juodkazis S; Adam PM; Krishnamoorthy S ACS Appl Mater Interfaces; 2021 Feb; 13(7):9113-9121. PubMed ID: 33583180 [TBL] [Abstract][Full Text] [Related]
2. Engineering Electromagnetic Hot-Spots in Nanoparticle Cluster Arrays on Reflective Substrates for Highly Sensitive Detection of (Bio)molecular Analytes. Rastogi R; Dogbe Foli EA; Vincent R; Adam PM; Krishnamoorthy S ACS Appl Mater Interfaces; 2021 Jul; 13(28):32653-32661. PubMed ID: 34242017 [TBL] [Abstract][Full Text] [Related]
3. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars. Caldwell JD; Glembocki OJ; Bezares FJ; Kariniemi MI; Niinistö JT; Hatanpää TT; Rendell RW; Ukaegbu M; Ritala MK; Prokes SM; Hosten CM; Leskelä MA; Kasica R Opt Express; 2011 Dec; 19(27):26056-64. PubMed ID: 22274194 [TBL] [Abstract][Full Text] [Related]
4. Manipulating "Hot Spots" from Nanometer to Angstrom: Toward Understanding Integrated Contributions of Molecule Number and Gap Size for Ultrasensitive Surface-Enhanced Raman Scattering Detection. Lu H; Zhu L; Lu Y; Su J; Zhang R; Cui Y ACS Appl Mater Interfaces; 2019 Oct; 11(42):39359-39368. PubMed ID: 31565918 [TBL] [Abstract][Full Text] [Related]
5. Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS. Jin HM; Kim JY; Heo M; Jeong SJ; Kim BH; Cha SK; Han KH; Kim JH; Yang GG; Shin J; Kim SO ACS Appl Mater Interfaces; 2018 Dec; 10(51):44660-44667. PubMed ID: 30480431 [TBL] [Abstract][Full Text] [Related]
6. Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS. Niu R; Gao F; Wang D; Zhu D; Su S; Chen S; YuWen L; Fan C; Wang L; Chao J ACS Nano; 2022 Sep; 16(9):14622-14631. PubMed ID: 36083609 [TBL] [Abstract][Full Text] [Related]
7. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal. Saha A; Palmal S; Jana NR Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658 [TBL] [Abstract][Full Text] [Related]
8. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
9. Ag@SiO2 Core-Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation. Shanthil M; Thomas R; Swathi RS; George Thomas K J Phys Chem Lett; 2012 Jun; 3(11):1459-64. PubMed ID: 26285622 [TBL] [Abstract][Full Text] [Related]
10. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis. Wy Y; Jung H; Hong JW; Han SW Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153 [TBL] [Abstract][Full Text] [Related]
11. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580 [TBL] [Abstract][Full Text] [Related]
12. Spatially Controlled Fabrication of Surface-Enhanced Raman Scattering Hot Spots through Photoinduced Dewetting of Silver Thin Films. Choi HK; Park SM; Jeong J; Lee H; Yeon GJ; Kim DS; Kim ZH J Phys Chem Lett; 2022 Apr; 13(13):2969-2975. PubMed ID: 35343701 [TBL] [Abstract][Full Text] [Related]
13. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots. Dzhagan V; Mazur N; Kapush O; Skoryk M; Pirko Y; Yemets A; Dzhahan V; Shepeliavyi P; Valakh M; Yukhymchuk V ACS Omega; 2024 Jan; 9(4):4819-4830. PubMed ID: 38313516 [TBL] [Abstract][Full Text] [Related]
14. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine. Ma Y; Liu H; Mao M; Meng J; Yang L; Liu J Anal Chem; 2016 Aug; 88(16):8145-51. PubMed ID: 27401135 [TBL] [Abstract][Full Text] [Related]
16. Sensitive and Reproducible Immunoassay of Multiple Mycotoxins Using Surface-Enhanced Raman Scattering Mapping on 3D Plasmonic Nanopillar Arrays. Wang X; Park SG; Ko J; Xiao X; Giannini V; Maier SA; Kim DH; Choo J Small; 2018 Sep; 14(39):e1801623. PubMed ID: 30062764 [TBL] [Abstract][Full Text] [Related]
17. Engineering 3D Nanoplasmonic Assemblies for High Performance Spectroscopic Sensing. Dinda S; Suresh V; Thoniyot P; Balčytis A; Juodkazis S; Krishnamoorthy S ACS Appl Mater Interfaces; 2015 Dec; 7(50):27661-6. PubMed ID: 26523480 [TBL] [Abstract][Full Text] [Related]
18. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers. Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354 [TBL] [Abstract][Full Text] [Related]
19. Molecular hot spots in surface-enhanced Raman scattering. Li M; Cushing SK; Zhou G; Wu N Nanoscale; 2020 Nov; 12(43):22036-22041. PubMed ID: 33146197 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of plasmonic cavity arrays for SERS analysis. Li N; Feng L; Teng F; Lu N Nanotechnology; 2017 May; 28(18):185301. PubMed ID: 28345533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]