BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33583285)

  • 1. A novel ISM band reflector type applicator design for microwave ablation systems.
    Murat C; Palandoken M; Kaya I; Kaya A
    Electromagn Biol Med; 2021 Apr; 40(2):286-300. PubMed ID: 33583285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metamaterial based AMC backed archimedean spiral antenna for in-vitro microwave hyperthermia of skin cancer.
    Kaur K; Kaur A
    Electromagn Biol Med; 2023 Oct; 42(4):163-181. PubMed ID: 38156657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Microwave Ablation Process in Sweet Potatoes as Substitute Liver.
    Khan MS; Hawlitzki M; Taheri SM; Rose G; Schweizer B; Brensing A
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Optimization of an Open-Ended Coaxial Slot Applicator for the Detection and Microwave Ablation of Tumors.
    Hessinger C; Schüßler M; Klos S; Kochanek M; Jakoby R
    Biology (Basel); 2021 Sep; 10(9):. PubMed ID: 34571791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental assessment of microwave ablation computational modeling with MR thermometry.
    Faridi P; Keselman P; Fallahi H; Prakash P
    Med Phys; 2020 Sep; 47(9):3777-3788. PubMed ID: 32506550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation-based design and characterization of a microwave applicator for MR-guided hyperthermia experimental studies in small animals.
    Faridi P; Bossmann SH; Prakash P
    Biomed Phys Eng Express; 2020 Jan; 6(1):. PubMed ID: 32999735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice].
    Marini P; Guiot C; Baiotto B; Gabriele P
    Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional Microwave Ablation: Experimental Evaluation of a 2.45-GHz Applicator in Ex Vivo and In Vivo Liver.
    Pfannenstiel A; Sebek J; Fallahi H; Beard WL; Ganta CK; Dupuy DE; Prakash P
    J Vasc Interv Radiol; 2020 Jul; 31(7):1170-1177.e2. PubMed ID: 32171539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations.
    Deshazer G; Prakash P; Merck D; Haemmerich D
    Int J Hyperthermia; 2017 Feb; 33(1):74-82. PubMed ID: 27431040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable tapered coaxial slot antenna for hepatic microwave ablation.
    Malhotra N; Marwaha A; Kumar A
    Electromagn Biol Med; 2016; 35(3):214-21. PubMed ID: 26147191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual applicator thermal ablation at 2.45 GHz: a numerical comparison and experiments on synchronous versus asynchronous and switched-mode feeding.
    Biffi Gentili G; Ignesti C
    Int J Hyperthermia; 2015; 31(5):528-37. PubMed ID: 25924016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of Using a Novel 2.45 GHz Double Short Distance Slot Coaxial Antenna for Minimally Invasive Cancer Breast Microwave Ablation Therapy: Computational Model, Phantom, and
    Ortega-Palacios R; Trujillo-Romero CJ; Cepeda Rubio MFJ; Vera A; Leija L; Reyes JL; Ramírez-Estudillo MC; Morales-Alvarez F; Vega-López MA
    J Healthc Eng; 2018; 2018():5806753. PubMed ID: 29854360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Applicator MR Imaging-Guided Microwave Ablation with Real-Time MR Thermometry: Phantom and Porcine Tissue Model Experiments.
    Ren L; Woodrum DA; Gorny KR; Felmlee JP; Favazza CP; Thompson SM; Lu A
    J Vasc Interv Radiol; 2023 Jan; 34(1):46-53.e4. PubMed ID: 36202337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Management of adreno-cortical adenomas using microwave ablation: study of the effects of the fat tissue.
    Bottiglieri A; O'Halloran M; Ruvio G; Farina L
    Int J Hyperthermia; 2022; 39(1):1179-1194. PubMed ID: 36096484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of frequency on the performance of microwave ablation.
    Sawicki JF; Shea JD; Behdad N; Hagness SC
    Int J Hyperthermia; 2017 Feb; 33(1):61-68. PubMed ID: 27443394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research.
    Jiang Y; Zhao J; Li W; Yang Y; Liu J; Qian Z
    Med Biol Eng Comput; 2017 Nov; 55(11):2027-2036. PubMed ID: 28462497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.