BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33583285)

  • 41. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance.
    Pfannenstiel A; Iannuccilli J; Cornelis FH; Dupuy DE; Beard WL; Prakash P
    Int J Hyperthermia; 2022; 39(1):664-674. PubMed ID: 35465811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Broadband lung dielectric properties over the ablative temperature range: Experimental measurements and parametric models.
    Sebek J; Bortel R; Prakash P
    Med Phys; 2019 Oct; 46(10):4291-4303. PubMed ID: 31286530
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microwave power and duration without extrauterine thermal damage in microwave endomyometrial ablation at 2.45 GHz.
    Kanaoka Y; Hirai K; Ishiko O
    J Obstet Gynaecol Res; 2005 Oct; 31(5):359-67. PubMed ID: 16176501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microwave ablation of ex vivo human liver and colorectal liver metastases with a novel 14.5 GHz generator.
    Jones RP; Kitteringham NR; Terlizzo M; Hancock C; Dunne D; Fenwick SW; Poston GJ; Ghaneh P; Malik HZ
    Int J Hyperthermia; 2012; 28(1):43-54. PubMed ID: 22235784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microwave ablation: results with a 2.45-GHz applicator in ex vivo bovine and in vivo porcine liver.
    Hines-Peralta AU; Pirani N; Clegg P; Cronin N; Ryan TP; Liu Z; Goldberg SN
    Radiology; 2006 Apr; 239(1):94-102. PubMed ID: 16484351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-frequency microwave ablation method for enhanced cancer treatment with minimized collateral damage.
    Yoon J; Cho J; Kim N; Kim DD; Lee E; Cheon C; Kwon Y
    Int J Cancer; 2011 Oct; 129(8):1970-8. PubMed ID: 21154744
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of Microwave Applicator Design on Electromagnetic Field Distribution and Heating Pattern of Cooked Peeled Shrimp.
    Siguemoto ÉS; Gut JAW; Dimitrakis G; Curet S; Boillereaux L
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441679
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Treatment planning in microwave thermal ablation: clinical gaps and recent research advances.
    Lopresto V; Pinto R; Farina L; Cavagnaro M
    Int J Hyperthermia; 2017 Feb; 33(1):83-100. PubMed ID: 27431328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro artefact assessment of a new MR-compatible microwave antenna and a standard MR-compatible radiofrequency ablation electrode for tumour ablation.
    Hoffmann R; Rempp H; Eibofner F; Keßler DE; Blumenstock G; Weiß J; Pereira PL; Nikolaou K; Clasen S
    Eur Radiol; 2016 Mar; 26(3):771-9. PubMed ID: 26134999
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microwave ablation technology: what every user should know.
    Brace CL
    Curr Probl Diagn Radiol; 2009; 38(2):61-7. PubMed ID: 19179193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chart for renal tumor microwave ablation from human study.
    Noventa A; Herpe G; Vesselle G; Guibal A; Velasco S; Chan P; Ingrand P; Boucebci S; Tasu JP
    Diagn Interv Imaging; 2018 Oct; 99(10):609-614. PubMed ID: 29914815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How large is the periablational zone after radiofrequency and microwave ablation? Computer-based comparative study of two currently used clinical devices.
    Trujillo M; Prakash P; Faridi P; Radosevic A; Curto S; Burdio F; Berjano E
    Int J Hyperthermia; 2020; 37(1):1131-1138. PubMed ID: 32996794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation.
    Curto S; Taj-Eldin M; Fairchild D; Prakash P
    Med Phys; 2015 Nov; 42(11):6152-61. PubMed ID: 26520708
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ex vivo validation of microwave thermal ablation simulation using different flow coefficients in the porcine liver.
    Hübner F; Schreiner R; Reimann C; Bazrafshan B; Kaltenbach B; Schüßler M; Jakoby R; Vogl TJ
    Med Eng Phys; 2019 Apr; 66():56-64. PubMed ID: 30826254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microwave thermal ablation: Effects of tissue properties variations on predictive models for treatment planning.
    Lopresto V; Pinto R; Farina L; Cavagnaro M
    Med Eng Phys; 2017 Aug; 46():63-70. PubMed ID: 28647287
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation.
    Schramm W; Yang D; Haemmerich D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5013-6. PubMed ID: 17946669
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach.
    Boregowda G; Mariappan P
    PLoS One; 2023; 18(7):e0289262. PubMed ID: 37506084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.