BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

727 related articles for article (PubMed ID: 33583771)

  • 1. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-Based Glycoproteomics.
    Riley NM; Bertozzi CR; Pitteri SJ
    Mol Cell Proteomics; 2021; 20():100029. PubMed ID: 33583771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Comparison of N-Linked Glycopeptide Enrichment Techniques Reveals Extensive Glycoproteomic Analysis of Plasma Enabled by SAX-ERLIC.
    Totten SM; Feasley CL; Bermudez A; Pitteri SJ
    J Proteome Res; 2017 Mar; 16(3):1249-1260. PubMed ID: 28199111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction modes and approaches to glycopeptide and glycoprotein enrichment.
    Chen CC; Su WC; Huang BY; Chen YJ; Tai HC; Obena RP
    Analyst; 2014 Feb; 139(4):688-704. PubMed ID: 24336240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of Intact Glycopeptides Using Strong Anion Exchange and Electrostatic Repulsion Hydrophilic Interaction Chromatography.
    Bermudez A; Pitteri SJ
    Methods Mol Biol; 2021; 2271():107-120. PubMed ID: 33908003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses].
    Liu L; Qin H; Ye M
    Se Pu; 2021 Oct; 39(10):1045-1054. PubMed ID: 34505426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycoproteomics: Charting new territory in mass spectrometry and glycobiology.
    Malaker SA
    J Mass Spectrom; 2024 Jun; 59(6):e5034. PubMed ID: 38726698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable isotope labeling of N-glycosylated peptides by enzymatic deglycosylation for mass spectrometry-based glycoproteomics.
    Kaji H; Isobe T
    Methods Mol Biol; 2013; 951():217-27. PubMed ID: 23296533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a strong anion exchange material in electrostatic repulsion-hydrophilic interaction chromatography for selective enrichment of glycopeptides.
    Cao L; Yu L; Guo Z; Li X; Xue X; Liang X
    J Chromatogr A; 2013 Jul; 1299():18-24. PubMed ID: 23751365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in mass spectrometry-based glycoproteomics.
    Frost DC; Li L
    Adv Protein Chem Struct Biol; 2014; 95():71-123. PubMed ID: 24985770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Enrichment Methods for Intact N- and O-Linked Glycopeptides Using Strong Anion Exchange and Hydrophilic Interaction Liquid Chromatography.
    Yang W; Shah P; Hu Y; Toghi Eshghi S; Sun S; Liu Y; Zhang H
    Anal Chem; 2017 Nov; 89(21):11193-11197. PubMed ID: 29016103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in mass spectrometry-based glycoproteomics.
    Yu A; Zhao J; Peng W; Banazadeh A; Williamson SD; Goli M; Huang Y; Mechref Y
    Electrophoresis; 2018 Dec; 39(24):3104-3122. PubMed ID: 30203847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale characterization of intact N-glycopeptides using an automated glycoproteomic method.
    Cheng K; Chen R; Seebun D; Ye M; Figeys D; Zou H
    J Proteomics; 2014 Oct; 110():145-54. PubMed ID: 25182382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding the Sweet Spot in ERLIC Mobile Phase for Simultaneous Enrichment of N-Glyco and Phosphopeptides.
    Cui Y; Yang K; Tabang DN; Huang J; Tang W; Li L
    J Am Soc Mass Spectrom; 2019 Dec; 30(12):2491-2501. PubMed ID: 31286442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry.
    Calvano CD; Zambonin CG; Jensen ON
    J Proteomics; 2008 Aug; 71(3):304-17. PubMed ID: 18638581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples.
    Lam MP; Lau E; Siu SO; Ng DC; Kong RP; Chiu PC; Yeung WS; Lo C; Chu IK
    Electrophoresis; 2011 Nov; 32(21):2930-40. PubMed ID: 22009802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment strategies for glycopeptides.
    Ito S; Hayama K; Hirabayashi J
    Methods Mol Biol; 2009; 534():195-203. PubMed ID: 19277551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HILIC and ERLIC Enrichment of Glycopeptides Derived from Breast and Brain Cancer Cells.
    Zacharias LG; Hartmann AK; Song E; Zhao J; Zhu R; Mirzaei P; Mechref Y
    J Proteome Res; 2016 Oct; 15(10):3624-3634. PubMed ID: 27533485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards structure-focused glycoproteomics.
    Chernykh A; Kawahara R; Thaysen-Andersen M
    Biochem Soc Trans; 2021 Feb; 49(1):161-186. PubMed ID: 33439247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry.
    Xiao H; Sun F; Suttapitugsakul S; Wu R
    Mass Spectrom Rev; 2019 Aug; 38(4-5):356-379. PubMed ID: 30605224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to dig deeper? Improved enrichment methods for mucin core-1 type glycopeptides.
    Darula Z; Sherman J; Medzihradszky KF
    Mol Cell Proteomics; 2012 Jul; 11(7):O111.016774. PubMed ID: 22393263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.