These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33583999)

  • 1. Dilution-based evaluation of airborne infection risk - Thorough expansion of Wells-Riley model.
    Zhang S; Lin Z
    Build Environ; 2021 May; 194():107674. PubMed ID: 33583999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review and comparison between the Wells-Riley and dose-response approaches to risk assessment of infectious respiratory diseases.
    Sze To GN; Chao CY
    Indoor Air; 2010 Feb; 20(1):2-16. PubMed ID: 19874402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing and controlling infection risk with Wells-Riley model and spatial flow impact factor (SFIF).
    Guo Y; Qian H; Sun Z; Cao J; Liu F; Luo X; Ling R; Weschler LB; Mo J; Zhang Y
    Sustain Cities Soc; 2021 Apr; 67():102719. PubMed ID: 33520610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces.
    Li X; Lester D; Rosengarten G; Aboltins C; Patel M; Cole I
    Sci Total Environ; 2022 Mar; 812():152592. PubMed ID: 34954184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zonal modeling of air distribution impact on the long-range airborne transmission risk of SARS-CoV-2.
    Aganovic A; Cao G; Kurnitski J; Melikov A; Wargocki P
    Appl Math Model; 2022 Dec; 112():800-821. PubMed ID: 36060304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contaminant removal and contaminant dispersion of air distribution for overall and local airborne infection risk controls.
    Zhang S; Niu D; Lu Y; Lin Z
    Sci Total Environ; 2022 Aug; 833():155173. PubMed ID: 35421454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On modelling airborne infection risk.
    Drossinos Y; Stilianakis NI
    R Soc Open Sci; 2024 Jul; 11(7):231976. PubMed ID: 39050731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Wells-Riley model revisited: Randomness, heterogeneity, and transient behaviours.
    Edwards AJ; King MF; Noakes CJ; Peckham D; López-García M
    Risk Anal; 2024 Sep; 44(9):2125-2147. PubMed ID: 38501447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quanta-independent approach for the assessment of strategies to reduce the risk of airborne infection.
    Aganovic A; Kurnitski J; Wargocki P
    Sci Total Environ; 2024 Jun; 927():172278. PubMed ID: 38583631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spatiotemporal assessment of occupants' infection risks in a multi-occupants space using modified Wells-Riley model.
    Yan Y; Li X; Fang X; Tao Y; Tu J
    Build Environ; 2023 Feb; 230():110007. PubMed ID: 36691649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk assessment for airborne disease transmission by poly-pathogen aerosols.
    Nordsiek F; Bodenschatz E; Bagheri G
    PLoS One; 2021; 16(4):e0248004. PubMed ID: 33831003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of airborne disease infection risks in an airliner cabin using the Lagrangian-based Wells-Riley approach.
    Yan Y; Li X; Shang Y; Tu J
    Build Environ; 2017 Aug; 121():79-92. PubMed ID: 32287972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration.
    Rudnick SN; Milton DK
    Indoor Air; 2003 Sep; 13(3):237-45. PubMed ID: 12950586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current circumstances and prospects on performance evaluation for infection control technologies of airborne viruses in indoorenvironments.
    Shimasaki N
    J Microorg Control; 2023; 28(4):177-186. PubMed ID: 38233169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural ventilation for the prevention of airborne contagion.
    Escombe AR; Oeser CC; Gilman RH; Navincopa M; Ticona E; Pan W; Martínez C; Chacaltana J; Rodríguez R; Moore DA; Friedland JS; Evans CA
    PLoS Med; 2007 Feb; 4(2):e68. PubMed ID: 17326709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of mechanical ventilation control strategies based on non-steady-state and steady-state Wells-Riley models on airborne transmission and building energy consumption.
    Sha HH; Zhang X; Qi DH
    J Cent South Univ; 2022; 29(7):2415-2430. PubMed ID: 36034192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the spatio-temporal infection risk in indoor spaces using an efficient airborne transmission model.
    Lau Z; Griffiths IM; English A; Kaouri K
    Proc Math Phys Eng Sci; 2022 Mar; 478(2259):20210383. PubMed ID: 35310953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing airborne infection risk of COVID-19 by locating air cleaners at proper positions indoor: Analysis with a simple model.
    Dai H; Zhao B
    Build Environ; 2022 Apr; 213():108864. PubMed ID: 35136279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A human behavior integrated hierarchical model of airborne disease transmission in a large city.
    Zhang N; Huang H; Su B; Ma X; Li Y
    Build Environ; 2018 Jan; 127():211-220. PubMed ID: 32287976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A probabilistic transmission dynamic model to assess indoor airborne infection risks.
    Liao CM; Chang CF; Liang HM
    Risk Anal; 2005 Oct; 25(5):1097-107. PubMed ID: 16297217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.