BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 33584550)

  • 1. Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease.
    Nicholson RJ; Pezzolesi MG; Summers SA
    Front Endocrinol (Lausanne); 2020; 11():622692. PubMed ID: 33584550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CERS6-derived ceramides aggravate kidney fibrosis by inhibiting PINK1-mediated mitophagy in diabetic kidney disease.
    Wang X; Song M; Li X; Su C; Yang Y; Wang K; Liu C; Zheng Z; Jia Y; Ren S; Dong W; Chen J; Wang T; Liu L; Guan M; Zhang C; Xue Y
    Am J Physiol Cell Physiol; 2023 Aug; 325(2):C538-C549. PubMed ID: 37458434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.
    Falkevall A; Mehlem A; Palombo I; Heller Sahlgren B; Ebarasi L; He L; Ytterberg AJ; Olauson H; Axelsson J; Sundelin B; Patrakka J; Scotney P; Nash A; Eriksson U
    Cell Metab; 2017 Mar; 25(3):713-726. PubMed ID: 28190774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy.
    Choi SR; Lim JH; Kim MY; Kim EN; Kim Y; Choi BS; Kim YS; Kim HW; Lim KM; Kim MJ; Park CW
    Metabolism; 2018 Aug; 85():348-360. PubMed ID: 29462574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting sphingolipid metabolism in the treatment of obesity/type 2 diabetes.
    Bellini L; Campana M; Mahfouz R; Carlier A; Véret J; Magnan C; Hajduch E; Le Stunff H
    Expert Opin Ther Targets; 2015; 19(8):1037-50. PubMed ID: 25814122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction.
    Boslem E; Meikle PJ; Biden TJ
    Islets; 2012; 4(3):177-87. PubMed ID: 22847494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ceramides - Lipotoxic Inducers of Metabolic Disorders.
    Chaurasia B; Summers SA
    Trends Endocrinol Metab; 2015 Oct; 26(10):538-550. PubMed ID: 26412155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted Lipidomic and Transcriptomic Analysis Identifies Dysregulated Renal Ceramide Metabolism in a Mouse Model of Diabetic Kidney Disease.
    Sas KM; Nair V; Byun J; Kayampilly P; Zhang H; Saha J; Brosius FC; Kretzler M; Pennathur S
    J Proteomics Bioinform; 2015 Oct; Suppl 14():. PubMed ID: 26778897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells.
    Bandet CL; Tan-Chen S; Bourron O; Le Stunff H; Hajduch E
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30678043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of sphingolipid metabolism in renal cortex of rats with streptozotocin-induced diabetes and the effects of rapamycin.
    Liu G; Han F; Yang Y; Xie Y; Jiang H; Mao Y; Wang H; Wang M; Chen R; Yang J; Chen J
    Nephrol Dial Transplant; 2011 May; 26(5):1493-502. PubMed ID: 20961887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aqueous extract of Portulaca oleracea ameliorates diabetic nephropathy through suppression of renal fibrosis and inflammation in diabetic db/db mice.
    Lee AS; Lee YJ; Lee SM; Yoon JJ; Kim JS; Kang DG; Lee HS
    Am J Chin Med; 2012; 40(3):495-510. PubMed ID: 22745066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Lipidome Profiling of the Kidney in Early-Stage Diabetic Nephropathy.
    Hou B; He P; Ma P; Yang X; Xu C; Lam SM; Shui G; Yang X; Zhang L; Qiang G; Du G
    Front Endocrinol (Lausanne); 2020; 11():359. PubMed ID: 32655493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Lard Works in Mysterious Ways: Ceramides in Nutrition-Linked Chronic Disease.
    Nicholson RJ; Norris MK; Poss AM; Holland WL; Summers SA
    Annu Rev Nutr; 2022 Aug; 42():115-144. PubMed ID: 35584813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrarenal metabolomics reveals the association of local organic toxins with the progression of diabetic kidney disease.
    Zhao T; Zhang H; Zhao T; Zhang X; Lu J; Yin T; Liang Q; Wang Y; Luo G; Lan H; Li P
    J Pharm Biomed Anal; 2012 Feb; 60():32-43. PubMed ID: 22153801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological Targeting of Mitochondria in Diabetic Kidney Disease.
    Cleveland KH; Schnellmann RG
    Pharmacol Rev; 2023 Mar; 75(2):250-262. PubMed ID: 36781216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of metabolic memory on inflammation and fibrosis associated with diabetic kidney disease: an epigenetic perspective.
    Zheng W; Guo J; Liu ZS
    Clin Epigenetics; 2021 Apr; 13(1):87. PubMed ID: 33883002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease.
    Mitrofanova A; Mallela SK; Ducasa GM; Yoo TH; Rosenfeld-Gur E; Zelnik ID; Molina J; Varona Santos J; Ge M; Sloan A; Kim JJ; Pedigo C; Bryn J; Volosenco I; Faul C; Zeidan YH; Garcia Hernandez C; Mendez AJ; Leibiger I; Burke GW; Futerman AH; Barisoni L; Ishimoto Y; Inagi R; Merscher S; Fornoni A
    Nat Commun; 2019 Jun; 10(1):2692. PubMed ID: 31217420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipids as a Culprit of Mitochondrial Dysfunction in Insulin Resistance and Type 2 Diabetes.
    Roszczyc-Owsiejczuk K; Zabielski P
    Front Endocrinol (Lausanne); 2021; 12():635175. PubMed ID: 33815291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urinary sphingolipids in adolescents and young adults with youth-onset diabetes.
    Nehus EJ; Sheanon NM; Zhang W; Marcovina SM; Setchell KDR; Mitsnefes MM
    Pediatr Nephrol; 2024 Jun; 39(6):1875-1883. PubMed ID: 38172468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Farnesoid X receptor (FXR) agonist ameliorates systemic insulin resistance, dysregulation of lipid metabolism, and alterations of various organs in a type 2 diabetic kidney animal model.
    Han SY; Song HK; Cha JJ; Han JY; Kang YS; Cha DR
    Acta Diabetol; 2021 Apr; 58(4):495-503. PubMed ID: 33399988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.