BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33584617)

  • 21. Apparent Digestibility of Macronutrients and Fatty Acids from Microalgae (
    Bélanger A; Sarker PK; Bureau DP; Chouinard Y; Vandenberg GW
    Animals (Basel); 2021 Feb; 11(2):. PubMed ID: 33572470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.
    Gupta A; Singh D; Byreddy AR; Thyagarajan T; Sonkar SP; Mathur AS; Tuli DK; Barrow CJ; Puri M
    Biotechnol J; 2016 Mar; 11(3):345-55. PubMed ID: 26580151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in
    Wang F; Bi Y; Diao J; Lv M; Cui J; Chen L; Zhang W
    Biotechnol Biofuels; 2019; 12():141. PubMed ID: 31182976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of the ω3-docosapentaenoic acid-producing microorganism Aurantiochytrium sp. T7.
    Wu CY; Okuda T; Ando A; Hatano A; Kikukawa H; Ogawa J
    J Biosci Bioeng; 2022 Mar; 133(3):229-234. PubMed ID: 34893429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-production of DHA and squalene by thraustochytrid from forest biomass.
    Patel A; Liefeldt S; Rova U; Christakopoulos P; Matsakas L
    Sci Rep; 2020 Feb; 10(1):1992. PubMed ID: 32029800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilization of lignocellulosic biomass towards the production of omega-3 fatty acids by the heterotrophic marine microalga Crypthecodinium cohnii.
    Karnaouri A; Chalima A; Kalogiannis KG; Varamogianni-Mamatsi D; Lappas A; Topakas E
    Bioresour Technol; 2020 May; 303():122899. PubMed ID: 32028216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.
    Diwan B; Parkhey P; Gupta P
    Folia Microbiol (Praha); 2018 Sep; 63(5):547-568. PubMed ID: 29687420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-criteria analysis approach for ranking and selection of microorganisms for the production of oils for biodiesel production.
    Ahmad FB; Zhang Z; Doherty WO; O'Hara IM
    Bioresour Technol; 2015 Aug; 190():264-73. PubMed ID: 25958151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid and DHA-production in Aurantiochytrium sp. - Responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes.
    Heggeset TMB; Ertesvåg H; Liu B; Ellingsen TE; Vadstein O; Aasen IM
    Sci Rep; 2019 Dec; 9(1):19470. PubMed ID: 31857635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential.
    Minhas AK; Hodgson P; Barrow CJ; Sashidhar B; Adholeya A
    Bioresour Technol; 2016 Jul; 211():556-65. PubMed ID: 27043053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioconversion of waste acid oil to docosahexaenoic acid by integration of "ex novo'' and "de novo'' fermentation in Aurantiochytrium limacinum.
    Laddha H; Pawar PR; Prakash G
    Bioresour Technol; 2021 Jul; 332():125062. PubMed ID: 33839510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgae as a raw material for biofuels production.
    Gouveia L; Oliveira AC
    J Ind Microbiol Biotechnol; 2009 Feb; 36(2):269-74. PubMed ID: 18982369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diets enriched in menhaden fish oil, seal oil, or shark liver oil have distinct effects on the lipid and fatty-acid composition of guinea pig heart.
    Murphy MG; Wright V; Ackman RG; Horackova M
    Mol Cell Biochem; 1997 Dec; 177(1-2):257-69. PubMed ID: 9450671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inositol as a new enhancer for improving lipid production and accumulation in Schizochytrium sp. SR21.
    Liu ZX; You S; Tang BP; Wang B; Sheng S; Wu FA; Wang J
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35497-35508. PubMed ID: 31410827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998.
    Souza AF; Rodriguez DM; Ribeaux DR; Luna MA; Lima E Silva TA; Andrade RF; Gusmão NB; Campos-Takaki GM
    Int J Mol Sci; 2016 Sep; 17(10):. PubMed ID: 27669227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes.
    Toral PG; Hervás G; Carreño D; Leskinen H; Belenguer A; Shingfield KJ; Frutos P
    J Dairy Sci; 2017 Aug; 100(8):6187-6198. PubMed ID: 28601459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Dark Side of Microalgae Biotechnology: A Heterotrophic Biorefinery Platform Directed to ω-3 Rich Lipid Production.
    Lopes da Silva T; Moniz P; Silva C; Reis A
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31835511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protist-Lactic Acid Bacteria Co-Culture as a Strategy to Bioaccumulate Polyunsaturated Fatty Acids in the Protist
    Marileo L; Acuña J; Rilling J; Díaz P; Langellotti AL; Russo GL; Barra PJ; Dantagnan P; Viscardi S
    Mar Drugs; 2023 Feb; 21(3):. PubMed ID: 36976191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.
    Chen CY; Chang HY
    Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous production of DHA and squalene from
    Patel A; Rova U; Christakopoulos P; Matsakas L
    Biotechnol Biofuels; 2019; 12():255. PubMed ID: 31687043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.