BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 33584641)

  • 21. Differences in heme and hemopexin content in lipoproteins from patients with sickle cell disease.
    Vendrame F; Olops L; Saad STO; Costa FF; Fertrin KY
    J Clin Lipidol; 2018; 12(6):1532-1538. PubMed ID: 30219641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease.
    Vinchi F; Costa da Silva M; Ingoglia G; Petrillo S; Brinkman N; Zuercher A; Cerwenka A; Tolosano E; Muckenthaler MU
    Blood; 2016 Jan; 127(4):473-86. PubMed ID: 26675351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-edged functions of hemopexin in hematological related diseases: from basic mechanisms to clinical application.
    Li Y; Chen R; Wang C; Deng J; Luo S
    Front Immunol; 2023; 14():1274333. PubMed ID: 38022615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease.
    Jison ML; Munson PJ; Barb JJ; Suffredini AF; Talwar S; Logun C; Raghavachari N; Beigel JH; Shelhamer JH; Danner RL; Gladwin MT
    Blood; 2004 Jul; 104(1):270-80. PubMed ID: 15031206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemopexin deficiency promotes acute kidney injury in sickle cell disease.
    Ofori-Acquah SF; Hazra R; Orikogbo OO; Crosby D; Flage B; Ackah EB; Lenhart D; Tan RJ; Vitturi DA; Paintsil V; Owusu-Dabo E; Ghosh S;
    Blood; 2020 Mar; 135(13):1044-1048. PubMed ID: 32043112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular and cellular effects of in vivo chronic intravascular hemolysis and anti-inflammatory therapeutic approaches.
    Gotardo ÉMF; Brito PL; Gushiken LFS; Chweih H; Leonardo FC; Costa FF; Conran N
    Vascul Pharmacol; 2023 Jun; 150():107176. PubMed ID: 37116732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemopexin dosing improves cardiopulmonary dysfunction in murine sickle cell disease.
    Buehler PW; Swindle D; Pak DI; Ferguson SK; Majka SM; Karoor V; Moldovan R; Sintas C; Black J; Gentinetta T; Buzzi RM; Vallelian F; Wassmer A; Edler M; Bain J; Schu D; Hassell K; Nuss R; Schaer DJ; Irwin DC
    Free Radic Biol Med; 2021 Nov; 175():95-107. PubMed ID: 34478834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuregulin-1 attenuates hemolysis- and ischemia induced-cerebrovascular inflammation associated with sickle cell disease.
    Chambliss C; Stiles JK; Gee BE
    J Stroke Cerebrovasc Dis; 2023 Feb; 32(2):106912. PubMed ID: 36473396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complement Component C5 and TLR Molecule CD14 Mediate Heme-Induced Thromboinflammation in Human Blood.
    Thomas AM; Gerogianni A; McAdam MB; Fløisand Y; Lau C; Espevik T; Nilsson PH; Mollnes TE; Barratt-Due A
    J Immunol; 2019 Sep; 203(6):1571-1578. PubMed ID: 31413105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathophysiology of Sickle Cell Disease.
    Sundd P; Gladwin MT; Novelli EM
    Annu Rev Pathol; 2019 Jan; 14():263-292. PubMed ID: 30332562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Therapeutic approaches to limit hemolysis-driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis.
    Vinchi F; Tolosano E
    Oxid Med Cell Longev; 2013; 2013():396527. PubMed ID: 23781294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathways to pulmonary hypertension in sickle cell disease: the search for prevention and early intervention.
    Shilo NR; Morris CR
    Expert Rev Hematol; 2017 Oct; 10(10):875-890. PubMed ID: 28817980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases.
    Vinchi F; De Franceschi L; Ghigo A; Townes T; Cimino J; Silengo L; Hirsch E; Altruda F; Tolosano E
    Circulation; 2013 Mar; 127(12):1317-29. PubMed ID: 23446829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impairment of neutrophil oxidative burst in children with sickle cell disease is associated with heme oxygenase-1.
    Evans C; Orf K; Horvath E; Levin M; De La Fuente J; Chakravorty S; Cunnington AJ
    Haematologica; 2015 Dec; 100(12):1508-16. PubMed ID: 26315932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MiR-451a and let-7i-5p loaded extracellular vesicles attenuate heme-induced inflammation in hiPSC-derived endothelial cells.
    Thomas JJ; Harp KO; Bashi A; Hood JL; Botchway F; Wilson MD; Thompson WE; Stiles JK; Driss A
    Front Immunol; 2022; 13():1082414. PubMed ID: 36618355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Circulating Cell-Free Hemoglobin in Sepsis-Associated Acute Kidney Injury.
    Kerchberger VE; Ware LB
    Semin Nephrol; 2020 Mar; 40(2):148-159. PubMed ID: 32303278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasma-Derived Hemopexin as a Candidate Therapeutic Agent for Acute Vaso-Occlusion in Sickle Cell Disease: Preclinical Evidence.
    Gentinetta T; Belcher JD; Brügger-Verdon V; Adam J; Ruthsatz T; Bain J; Schu D; Ventrici L; Edler M; Lioe H; Patel K; Chen C; Nguyen J; Abdulla F; Zhang P; Wassmer A; Jain M; Mischnik M; Pelzing M; Martin K; Davis R; Didichenko S; Schaub A; Brinkman N; Herzog E; Zürcher A; Vercellotti GM; Kato GJ; Höbarth G
    J Clin Med; 2022 Jan; 11(3):. PubMed ID: 35160081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Depletion of haptoglobin and hemopexin promote hemoglobin-mediated lipoprotein oxidation in sickle cell disease.
    Yalamanoglu A; Deuel JW; Hunt RC; Baek JH; Hassell K; Redinius K; Irwin DC; Schaer DJ; Buehler PW
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L765-L774. PubMed ID: 30047285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Placenta growth factor in sickle cell disease: association with hemolysis and inflammation.
    Brittain JE; Hulkower B; Jones SK; Strayhorn D; De Castro L; Telen MJ; Orringer EP; Hinderliter A; Ataga KI
    Blood; 2010 Mar; 115(10):2014-20. PubMed ID: 20040765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.