BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33584746)

  • 1. Comparative Chloroplast Genomics of
    Xu X; Wang D
    Front Plant Sci; 2020; 11():600354. PubMed ID: 33584746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic analysis based on single-copy orthologous proteins in highly variable chloroplast genomes of Corydalis.
    Yin X; Huang F; Liu X; Guo J; Cui N; Liang C; Lian Y; Deng J; Wu H; Yin H; Jiang G
    Sci Rep; 2022 Aug; 12(1):14241. PubMed ID: 35987818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights Into the Backbone Phylogeny and Character Evolution of
    Xu X; Li X; Wang D
    Front Plant Sci; 2022; 13():926574. PubMed ID: 35991421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive reorganization of the chloroplast genome of
    Raman G; Nam GH; Park S
    Front Plant Sci; 2022; 13():1043740. PubMed ID: 37090468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly variable chloroplast genome from two endangered Papaveraceae lithophytes
    Ren F; Wang L; Li Y; Zhuo W; Xu Z; Guo H; Liu Y; Gao R; Song J
    Ecol Evol; 2021 May; 11(9):4158-4171. PubMed ID: 33976800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme Reconfiguration of Plastid Genomes in Papaveraceae: Rearrangements, Gene Loss, Pseudogenization, IR Expansion, and Repeats.
    Cao J; Wang H; Cao Y; Kan S; Li J; Liu Y
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastome Evolution and Phylogeny of Orchidaceae, With 24 New Sequences.
    Kim YK; Jo S; Cheon SH; Joo MJ; Hong JR; Kwak M; Kim KJ
    Front Plant Sci; 2020; 11():22. PubMed ID: 32153600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions.
    Guo YY; Yang JX; Bai MZ; Zhang GQ; Liu ZJ
    BMC Plant Biol; 2021 May; 21(1):248. PubMed ID: 34058997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family.
    Martin GE; Rousseau-Gueutin M; Cordonnier S; Lima O; Michon-Coudouel S; Naquin D; de Carvalho JF; Aïnouche M; Salmon A; Aïnouche A
    Ann Bot; 2014 Jun; 113(7):1197-210. PubMed ID: 24769537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba.
    Shrestha B; Weng ML; Theriot EC; Gilbert LE; Ruhlman TA; Krosnick SE; Jansen RK
    Mol Phylogenet Evol; 2019 Sep; 138():53-64. PubMed ID: 31129347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastome Evolution in the Hyperdiverse Genus
    Wei N; Pérez-Escobar OA; Musili PM; Huang WC; Yang JB; Hu AQ; Hu GW; Grace OM; Wang QF
    Front Plant Sci; 2021; 12():712064. PubMed ID: 34421963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives.
    Wu S; Chen J; Li Y; Liu A; Li A; Yin M; Shrestha N; Liu J; Ren G
    BMC Plant Biol; 2021 Sep; 21(1):421. PubMed ID: 34521343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the complete chloroplast genome of Papaveraceae to identify rearrangements within the Corydalis chloroplast genome.
    Kim SC; Ha YH; Park BK; Jang JE; Kang ES; Kim YS; Kimspe TH; Kim HJ
    PLoS One; 2023; 18(9):e0289625. PubMed ID: 37733832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A systematic comparison of eight new plastome sequences from
    Sun J; Dong X; Cao Q; Xu T; Zhu M; Sun J; Dong T; Ma D; Han Y; Li Z
    PeerJ; 2019; 7():e6563. PubMed ID: 30881765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights Into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies.
    Köhler M; Reginato M; Souza-Chies TT; Majure LC
    Front Plant Sci; 2020; 11():729. PubMed ID: 32636853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete plastome sequencing of both living species of Circaeasteraceae (Ranunculales) reveals unusual rearrangements and the loss of the ndh gene family.
    Sun Y; Moore MJ; Lin N; Adelalu KF; Meng A; Jian S; Yang L; Li J; Wang H
    BMC Genomics; 2017 Aug; 18(1):592. PubMed ID: 28793854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic changes in the plastid and mitochondrial genomes of the angiosperm Corydalis pauciovulata (Papaveraceae).
    Park S; An B; Park S
    BMC Plant Biol; 2024 Apr; 24(1):303. PubMed ID: 38644497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total duplication of the small single copy region in the angiosperm plastome: Rearrangement and inverted repeat instability in Asarum.
    Sinn BT; Sedmak DD; Kelly LM; Freudenstein JV
    Am J Bot; 2018 Jan; 105(1):71-84. PubMed ID: 29532923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae).
    Do HD; Kim JS; Kim JH
    Gene; 2013 Nov; 530(2):229-35. PubMed ID: 23973725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation.
    Park S; An B; Park S
    Sci Rep; 2018 Sep; 8(1):13568. PubMed ID: 30206286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.