These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 33584833)

  • 1. Plant adaptation to climate change - Where are we?
    Anderson J; Song BH
    J Syst Evol; 2020 Sep; 58(5):533-545. PubMed ID: 33584833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review: Plant eco-evolutionary responses to climate change: Emerging directions.
    Hamann E; Denney D; Day S; Lombardi E; Jameel MI; MacTavish R; Anderson JT
    Plant Sci; 2021 Mar; 304():110737. PubMed ID: 33568289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling up neodomestication for climate-ready crops.
    Gutaker RM; Chater CCC; Brinton J; Castillo-Lorenzo E; Breman E; Pironon S
    Curr Opin Plant Biol; 2022 Apr; 66():102169. PubMed ID: 35065528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climatic adaptation and ecological divergence between two closely related pine species in Southeast China.
    Zhou Y; Zhang L; Liu J; Wu G; Savolainen O
    Mol Ecol; 2014 Jul; 23(14):3504-22. PubMed ID: 24935279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic reaction norms inform predictions of plastic and adaptive responses to climate change.
    Oomen RA; Hutchings JA
    J Anim Ecol; 2022 Jun; 91(6):1073-1087. PubMed ID: 35445402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invoking adaptation to decipher the genetic legacy of past climate change.
    de Lafontaine G; Napier JD; Petit RJ; Hu FS
    Ecology; 2018 Jul; 99(7):1530-1546. PubMed ID: 29729183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures.
    Bay RA; Rose N; Barrett R; Bernatchez L; Ghalambor CK; Lasky JR; Brem RB; Palumbi SR; Ralph P
    Am Nat; 2017 May; 189(5):463-473. PubMed ID: 28410032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Environment Associations, an Innovative Tool for Studying Heritable Evolutionary Adaptation in Orphan Crops and Wild Relatives.
    Cortés AJ; López-Hernández F; Blair MW
    Front Genet; 2022; 13():910386. PubMed ID: 35991553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change.
    Denney DA; Jameel MI; Bemmels JB; Rochford ME; Anderson JT
    AoB Plants; 2020 Apr; 12(2):plaa005. PubMed ID: 32211145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Running to stand still: adaptation and the response of plants to rapid climate change.
    Jump AS; Peñuelas J
    Ecol Lett; 2005 Sep; 8(9):1010-1020. PubMed ID: 34517682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
    Weckwerth W
    J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latitudinal variation in climate-associated genes imperils range edge populations.
    Smith S; Brauer CJ; Sasaki M; Unmack PJ; Guillot G; Laporte M; Bernatchez L; Beheregaray LB
    Mol Ecol; 2020 Nov; 29(22):4337-4349. PubMed ID: 32930432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the components of adaptive capacity to improve conservation and management efforts under global change.
    Nicotra AB; Beever EA; Robertson AL; Hofmann GE; O'Leary J
    Conserv Biol; 2015 Oct; 29(5):1268-78. PubMed ID: 25926277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change.
    Bigot S; Buges J; Gilly L; Jacques C; Le Boulch P; Berger M; Delcros P; Domergue JB; Koehl A; Ley-Ngardigal B; Tran Van Canh L; Couée I
    Glob Chang Biol; 2018 Dec; 24(12):5573-5589. PubMed ID: 30155993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary Quantitative Genomics of Populus trichocarpa.
    Porth I; Klápště J; McKown AD; La Mantia J; Guy RD; Ingvarsson PK; Hamelin R; Mansfield SD; Ehlting J; Douglas CJ; El-Kassaby YA
    PLoS One; 2015; 10(11):e0142864. PubMed ID: 26599762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do phenology, plasticity, and evolution determine the fitness consequences of climate change for montane butterflies?
    Kingsolver JG; Buckley LB
    Evol Appl; 2018 Sep; 11(8):1231-1244. PubMed ID: 30151036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change.
    Jordan R; Hoffmann AA; Dillon SK; Prober SM
    Mol Ecol; 2017 Nov; 26(21):6002-6020. PubMed ID: 28862778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Range Position on Locally Adaptive Gene-Environment Associations in Populus Flowering Time Genes.
    Keller SR; Chhatre VE; Fitzpatrick MC
    J Hered; 2017 Dec; 109(1):47-58. PubMed ID: 29126208
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.