These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33584975)

  • 21. Compressed Sensing: From Research to Clinical Practice with Deep Neural Networks.
    Sandino CM; Cheng JY; Chen F; Mardani M; Pauly JM; Vasanawala SS
    IEEE Signal Process Mag; 2020 Jan; 37(1):111-127. PubMed ID: 33192036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning Sub-Sampling and Signal Recovery With Applications in Ultrasound Imaging.
    Huijben IAM; Veeling BS; Janse K; Mischi M; van Sloun RJG
    IEEE Trans Med Imaging; 2020 Dec; 39(12):3955-3966. PubMed ID: 32746138
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joint optimization of Cartesian sampling patterns and reconstruction for single-contrast and multi-contrast fast magnetic resonance imaging.
    Wang J; Yang Q; Yang Q; Xu L; Cai C; Cai S
    Comput Methods Programs Biomed; 2022 Nov; 226():107150. PubMed ID: 36183640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction.
    Karkalousos D; Noteboom S; Hulst HE; Vos FM; Caan MWA
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35508147
    [No Abstract]   [Full Text] [Related]  

  • 25. ENSURE: ENSEMBLE STEIN'S UNBIASED RISK ESTIMATOR FOR UNSUPERVISED LEARNING.
    Aggarwal HK; Pramanik A; Jacob M
    Proc IEEE Int Conf Acoust Speech Signal Process; 2021 Jun; 2021():. PubMed ID: 34335103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion for Undersampled MRI Reconstruction.
    Leynes AP; Deveshwar N; Nagarajan SS; Larson PEZ
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2358-2369. PubMed ID: 38335079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deformation corrected compressed sensing (DC-CS): a novel framework for accelerated dynamic MRI.
    Lingala SG; DiBella E; Jacob M
    IEEE Trans Med Imaging; 2015 Jan; 34(1):72-85. PubMed ID: 25095251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compressed sensing MRI based on image decomposition model and group sparsity.
    Fan X; Lian Q; Shi B
    Magn Reson Imaging; 2019 Jul; 60():101-109. PubMed ID: 30910695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reference-Driven Compressed Sensing MR Image Reconstruction Using Deep Convolutional Neural Networks without Pre-Training.
    Zhao D; Zhao F; Gan Y
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-performance rapid MR parameter mapping using model-based deep adversarial learning.
    Liu F; Kijowski R; Feng L; El Fakhri G
    Magn Reson Imaging; 2020 Dec; 74():152-160. PubMed ID: 32980503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction.
    Geng C; Jiang M; Fang X; Li Y; Jin G; Chen A; Liu F
    Comput Methods Programs Biomed; 2023 Apr; 232():107440. PubMed ID: 36881983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blind Compressed Sensing Enables 3-Dimensional Dynamic Free Breathing Magnetic Resonance Imaging of Lung Volumes and Diaphragm Motion.
    Bhave S; Lingala SG; Newell JD; Nagle SK; Jacob M
    Invest Radiol; 2016 Jun; 51(6):387-99. PubMed ID: 26863578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Jointly Learning Non-Cartesian
    Radhakrishna CG; Ciuciu P
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compressible Latent-Space Invertible Networks for Generative Model-Constrained Image Reconstruction.
    Kelkar VA; Bhadra S; Anastasio MA
    IEEE Trans Comput Imaging; 2021; 7():209-223. PubMed ID: 35989942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning-enhanced fluorescence microscopy via degeneration decoupling.
    Liu J; Huang X; Chen L; Tan S
    Opt Express; 2020 May; 28(10):14859-14873. PubMed ID: 32403520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction.
    Bustin A; Fuin N; Botnar RM; Prieto C
    Front Cardiovasc Med; 2020; 7():17. PubMed ID: 32158767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Memory efficient model based deep learning reconstructions for high spatial resolution 3D non-cartesian acquisitions.
    Miller Z; Pirasteh A; Johnson KM
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36854193
    [No Abstract]   [Full Text] [Related]  

  • 39. Accelerating multi-echo chemical shift encoded water-fat MRI using model-guided deep learning.
    Li S; Shen C; Ding Z; She H; Du YP
    Magn Reson Med; 2022 Oct; 88(4):1851-1866. PubMed ID: 35649172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.