These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 33585422)
1. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Yang W; Gong Y; Li W Front Bioeng Biotechnol; 2020; 8():622923. PubMed ID: 33585422 [TBL] [Abstract][Full Text] [Related]
3. A review of organic and inorganic biomaterials for neural interfaces. Fattahi P; Yang G; Kim G; Abidian MR Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434 [TBL] [Abstract][Full Text] [Related]
4. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording. Patil AC; Thakor NV Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777 [TBL] [Abstract][Full Text] [Related]
5. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials. Choi C; Lee Y; Cho KW; Koo JH; Kim DH Acc Chem Res; 2019 Jan; 52(1):73-81. PubMed ID: 30586292 [TBL] [Abstract][Full Text] [Related]
6. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lee JH; Kim H; Kim JH; Lee SH Lab Chip; 2016 Mar; 16(6):959-76. PubMed ID: 26891410 [TBL] [Abstract][Full Text] [Related]
7. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Green RA; Lovell NH; Wallace GG; Poole-Warren LA Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423 [TBL] [Abstract][Full Text] [Related]
8. Progress and challenges of implantable neural interfaces based on nature-derived materials. Redolfi Riva E; Micera S Bioelectron Med; 2021 Apr; 7(1):6. PubMed ID: 33902750 [TBL] [Abstract][Full Text] [Related]
9. Polymer-Based Biocompatible Packaging for Implantable Devices: Packaging Method, Materials, and Reliability Simulation. Seok S Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577664 [TBL] [Abstract][Full Text] [Related]
11. Conducting polymer-based nanostructured materials for brain-machine interfaces. Ziai Y; Zargarian SS; Rinoldi C; Nakielski P; Sola A; Lanzi M; Truong YB; Pierini F Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1895. PubMed ID: 37141863 [TBL] [Abstract][Full Text] [Related]
12. Enhancing biocompatibility of the brain-machine interface: A review. Villa J; Cury J; Kessler L; Tan X; Richter CP Bioact Mater; 2024 Dec; 42():531-549. PubMed ID: 39308547 [TBL] [Abstract][Full Text] [Related]
13. Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation. Nimbalkar S; Samejima S; Dang V; Hunt T; Nunez O; Moritz C; Kassegne S J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34492644 [No Abstract] [Full Text] [Related]
14. Research Progress on the Flexibility of an Implantable Neural Microelectrode. Zhao H; Liu R; Zhang H; Cao P; Liu Z; Li Y Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334680 [TBL] [Abstract][Full Text] [Related]
15. Bioactive polymer-enabled conformal neural interface and its application strategies. Hu Z; Niu Q; Hsiao BS; Yao X; Zhang Y Mater Horiz; 2023 Mar; 10(3):808-828. PubMed ID: 36597872 [TBL] [Abstract][Full Text] [Related]
16. Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording. Li SY; Tseng HY; Chen BW; Lo YC; Shao HH; Wu YT; Li SJ; Chang CW; Liu TC; Hsieh FY; Yang Y; Lai YB; Chen PC; Chen YY Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832046 [TBL] [Abstract][Full Text] [Related]
17. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing. Keogh C Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294 [TBL] [Abstract][Full Text] [Related]
18. Polymeric Biomaterials for Medical Implants and Devices. Teo AJT; Mishra A; Park I; Kim YJ; Park WT; Yoon YJ ACS Biomater Sci Eng; 2016 Apr; 2(4):454-472. PubMed ID: 33465850 [TBL] [Abstract][Full Text] [Related]