These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33585736)

  • 1. Conjugation of Polysulfobetaine via Poly(pyrogallol) Coatings for Improving the Antifouling Efficacy of Biomaterials.
    Yeh SL; Wang TC; Yusa SI; Thissen H; Tsai WB
    ACS Omega; 2021 Feb; 6(5):3517-3524. PubMed ID: 33585736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Transparent PEGylated Antifouling Coatings via One-Step Pyrogallol Deposition.
    Yeh SL; Deval P; Tsai WB
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Polysulfobetaine Gradient Coating via Oxidation Polymerization of Pyrogallol To Modulate Biointerfaces.
    Deval P; Lin CH; Tsai WB
    ACS Omega; 2022 Mar; 7(8):7125-7133. PubMed ID: 35252703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces.
    Chou YN; Wen TC; Chang Y
    Acta Biomater; 2016 Aug; 40():78-91. PubMed ID: 27045347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Low-Fouling Surfaces on Alkyne-Functionalized Poly-(p-xylylenes) Using Click Chemistry.
    Chen PJ; Chen HY; Tsai WB
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step electrochemical deposition of antifouling polymers with pyrogallol for biosensing applications.
    Yeh SL; Deval P; Wu JG; Luo SC; Tsai WB
    J Mater Chem B; 2022 Apr; 10(14):2504-2511. PubMed ID: 35018937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.
    Xing CM; Meng FN; Quan M; Ding K; Dang Y; Gong YK
    Acta Biomater; 2017 Sep; 59():129-138. PubMed ID: 28663144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfaces with antifouling-antimicrobial dual function
    Khlyustova A; Kirsch M; Ma X; Cheng Y; Yang R
    J Mater Chem B; 2022 Apr; 10(14):2728-2739. PubMed ID: 35156115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Aminomalononitrile-Based Coatings Containing Zwitterionic Copolymers for the Reduction of Biofouling and the Foreign Body Response.
    Chen WH; Liao TY; Thissen H; Tsai WB
    ACS Biomater Sci Eng; 2019 Dec; 5(12):6454-6462. PubMed ID: 33417798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.
    Knowles BR; Wagner P; Maclaughlin S; Higgins MJ; Molino PJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18584-18594. PubMed ID: 28523917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties.
    Gao Q; Yu M; Su Y; Xie M; Zhao X; Li P; Ma PX
    Acta Biomater; 2017 Mar; 51():112-124. PubMed ID: 28131941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Antimicrobial and Antifouling Universal Coating via Rapid Deposition of Polydopamine and Zwitterionization.
    Fan YJ; Pham MT; Huang CJ
    Langmuir; 2019 Feb; 35(5):1642-1651. PubMed ID: 30114915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired zwitterionic microgel-based coating: Controllable microstructure, high stability, and anticoagulant properties.
    Yao M; Sun X; Guo Z; Zhao Z; Yan Z; Yao F; Zhang H; Li J
    Acta Biomater; 2022 Oct; 151():290-303. PubMed ID: 35995406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates.
    Leigh BL; Cheng E; Xu L; Derk A; Hansen MR; Guymon CA
    Langmuir; 2019 Feb; 35(5):1100-1110. PubMed ID: 29983076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces.
    Chou YN; Chang Y; Wen TC
    ACS Appl Mater Interfaces; 2015 May; 7(19):10096-107. PubMed ID: 25912841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption.
    Chien HW; Tsai CC; Tsai WB; Wang MJ; Kuo WH; Wei TC; Huang ST
    Colloids Surf B Biointerfaces; 2013 Jul; 107():152-9. PubMed ID: 23500725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zwitterionic copolymers bearing phosphonate or phosphonic motifs as novel metal-anchorable anti-fouling coatings.
    Huang T; Liu H; Liu P; Liu P; Li L; Shen J
    J Mater Chem B; 2017 Jul; 5(27):5380-5389. PubMed ID: 32264077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization.
    Bai L; Tan L; Chen L; Liu S; Wang Y
    J Mater Chem B; 2014 Nov; 2(44):7785-7794. PubMed ID: 32261916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Surface Modification Strategy via Photopolymerized Poly-Sulfobetaine Methacrylate Coating to Prevent Bacterial Adhesion on Titanium Surfaces.
    Gülses A; Lopar A; Es-Souni M; Emmert M; Es-Souni M; Behrens E; Naujokat H; Liedtke KR; Acil Y; Wiltfang J; Flörke C
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zwitterionic Polysulfobetaine Coating and Antiplatelet Liposomes Reduce Fouling in Artificial Lung Circuits.
    Amoako K; Kaufman R; Haddad WAM; Pusey R; Saniesetty VHK; Sun H; Skoog D; Cook K
    Macromol Biosci; 2023 Apr; 23(4):e2200479. PubMed ID: 36609882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.