These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33585865)

  • 1. Global translational landscape of the Candida albicans morphological transition.
    Mundodi V; Choudhary S; Smith AD; Kadosh D
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spliceosome impacts morphogenesis in the human fungal pathogen
    Lash E; Maufrais C; Janbon G; Robbins N; Herzel L; Cowen LE
    mBio; 2024 Aug; 15(8):e0153524. PubMed ID: 38980041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide transcriptional analysis of morphology determination in Candida albicans.
    Carlisle PL; Kadosh D
    Mol Biol Cell; 2013 Feb; 24(3):246-60. PubMed ID: 23242994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans.
    Lash E; Prudent V; Stogios PJ; Savchenko A; Noble SM; Robbins N; Cowen LE
    mBio; 2023 Apr; 14(2):e0343422. PubMed ID: 36809010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 5' UTR-mediated translational efficiency mechanism inhibits the Candida albicans morphological transition.
    Childers DS; Mundodi V; Banerjee M; Kadosh D
    Mol Microbiol; 2014 May; 92(3):570-85. PubMed ID: 24601998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans.
    Kadosh D
    Curr Opin Microbiol; 2019 Dec; 52():27-34. PubMed ID: 31129557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Candida albicans morphology and pathogenicity by post-transcriptional mechanisms.
    Kadosh D
    Cell Mol Life Sci; 2016 Nov; 73(22):4265-4278. PubMed ID: 27312239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 5' Untranslated Region of the
    Desai PR; Lengeler K; Kapitan M; Janßen SM; Alepuz P; Jacobsen ID; Ernst JF
    mSphere; 2018 Jul; 3(4):. PubMed ID: 29976646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ppg1, a PP2A-type protein phosphatase, controls filament extension and virulence in Candida albicans.
    Albataineh MT; Lazzell A; Lopez-Ribot JL; Kadosh D
    Eukaryot Cell; 2014 Dec; 13(12):1538-47. PubMed ID: 25326520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Metabolic Profiling Identifies
    Garbe E; Gerwien F; Driesch D; Müller T; Böttcher B; Gräler M; Vylkova S
    mSystems; 2022 Dec; 7(6):e0053922. PubMed ID: 36264075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ahr1 and Tup1 Contribute to the Transcriptional Control of Virulence-Associated Genes in Candida albicans.
    Ruben S; Garbe E; Mogavero S; Albrecht-Eckardt D; Hellwig D; Häder A; Krüger T; Gerth K; Jacobsen ID; Elshafee O; Brunke S; Hünniger K; Kniemeyer O; Brakhage AA; Morschhäuser J; Hube B; Vylkova S; Kurzai O; Martin R
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Staurosporine Induces Filamentation in the Human Fungal Pathogen
    Xie JL; O'Meara TR; Polvi EJ; Robbins N; Cowen LE
    mSphere; 2017; 2(2):. PubMed ID: 28261668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model.
    Spiering MJ; Moran GP; Chauvel M; Maccallum DM; Higgins J; Hokamp K; Yeomans T; d'Enfert C; Coleman DC; Sullivan DJ
    Eukaryot Cell; 2010 Feb; 9(2):251-65. PubMed ID: 20023067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filament condition-specific response elements control the expression of NRG1 and UME6, key transcriptional regulators of morphology and virulence in Candida albicans.
    Childers DS; Kadosh D
    PLoS One; 2015; 10(3):e0122775. PubMed ID: 25811669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation.
    Romo JA; Zhang H; Cai H; Kadosh D; Koehler JR; Saville SP; Wang Y; Lopez-Ribot JL
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31511371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pho85, Pcl1, and Hms1 signaling governs Candida albicans morphogenesis induced by high temperature or Hsp90 compromise.
    Shapiro RS; Sellam A; Tebbji F; Whiteway M; Nantel A; Cowen LE
    Curr Biol; 2012 Mar; 22(6):461-70. PubMed ID: 22365851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signaling through Lrg1, Rho1 and Pkc1 Governs Candida albicans Morphogenesis in Response to Diverse Cues.
    Xie JL; Grahl N; Sless T; Leach MD; Kim SH; Hogan DA; Robbins N; Cowen LE
    PLoS Genet; 2016 Oct; 12(10):e1006405. PubMed ID: 27788136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single inhibitory upstream open reading frame (uORF) is sufficient to regulate Candida albicans GCN4 translation in response to amino acid starvation conditions.
    Sundaram A; Grant CM
    RNA; 2014 Apr; 20(4):559-67. PubMed ID: 24570481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide translational response of
    Choudhary S; Mundodi V; Smith AD; Kadosh D
    Microbiol Spectr; 2023 Aug; 11(5):e0257223. PubMed ID: 37610232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional divergence of a global regulatory complex governing fungal filamentation.
    Polvi EJ; Veri AO; Liu Z; Hossain S; Hyde S; Kim SH; Tebbji F; Sellam A; Todd RT; Xie JL; Lin ZY; Wong CJ; Shapiro RS; Whiteway M; Robbins N; Gingras AC; Selmecki A; Cowen LE
    PLoS Genet; 2019 Jan; 15(1):e1007901. PubMed ID: 30615616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.