These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 33585867)
1. The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. Rogers AR; Dunne JC; Romay C; Bohn M; Buckler ES; Ciampitti IA; Edwards J; Ertl D; Flint-Garcia S; Gore MA; Graham C; Hirsch CN; Hood E; Hooker DC; Knoll J; Lee EC; Lorenz A; Lynch JP; McKay J; Moose SP; Murray SC; Nelson R; Rocheford T; Schnable JC; Schnable PS; Sekhon R; Singh M; Smith M; Springer N; Thelen K; Thomison P; Thompson A; Tuinstra M; Wallace J; Wisser RJ; Xu W; Gilmour AR; Kaeppler SM; De Leon N; Holland JB G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585867 [TBL] [Abstract][Full Text] [Related]
2. Environment-specific genomic prediction ability in maize using environmental covariates depends on environmental similarity to training data. Rogers AR; Holland JB G3 (Bethesda); 2022 Feb; 12(2):. PubMed ID: 35100364 [TBL] [Abstract][Full Text] [Related]
3. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694 [TBL] [Abstract][Full Text] [Related]
4. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254 [TBL] [Abstract][Full Text] [Related]
5. Using machine learning to combine genetic and environmental data for maize grain yield predictions across multi-environment trials. Fernandes IK; Vieira CC; Dias KOG; Fernandes SB Theor Appl Genet; 2024 Jul; 137(8):189. PubMed ID: 39044035 [TBL] [Abstract][Full Text] [Related]
6. Improving genomic predictions with inbreeding and nonadditive effects in two admixed maize hybrid populations in single and multienvironment contexts. Roth M; Beugnot A; Mary-Huard T; Moreau L; Charcosset A; Fiévet JB Genetics; 2022 Apr; 220(4):. PubMed ID: 35150258 [TBL] [Abstract][Full Text] [Related]
9. Modeling copy number variation in the genomic prediction of maize hybrids. Lyra DH; Galli G; Alves FC; Granato ÍSC; Vidotti MS; Bandeira E Sousa M; Morosini JS; Crossa J; Fritsche-Neto R Theor Appl Genet; 2019 Jan; 132(1):273-288. PubMed ID: 30382311 [TBL] [Abstract][Full Text] [Related]
10. Genomic prediction applied to multiple traits and environments in second season maize hybrids. de Oliveira AA; Resende MFR; Ferrão LFV; Amadeu RR; Guimarães LJM; Guimarães CT; Pastina MM; Margarido GRA Heredity (Edinb); 2020 Aug; 125(1-2):60-72. PubMed ID: 32472060 [TBL] [Abstract][Full Text] [Related]
11. Correlations and comparisons of quantitative trait loci with family per se and testcross performance for grain yield and related traits in maize. Peng B; Li Y; Wang Y; Liu C; Liu Z; Zhang Y; Tan W; Wang D; Shi Y; Sun B; Song Y; Wang T; Li Y Theor Appl Genet; 2013 Mar; 126(3):773-89. PubMed ID: 23183923 [TBL] [Abstract][Full Text] [Related]
12. Genomic prediction and association mapping of maize grain yield in multi-environment trials based on reaction norm models. Tolley SA; Brito LF; Wang DR; Tuinstra MR Front Genet; 2023; 14():1221751. PubMed ID: 37719703 [TBL] [Abstract][Full Text] [Related]
13. Estimates of genetic variance in an F2 maize population. Wolf DP; Peternelli LA; Hallauer AR J Hered; 2000; 91(5):384-91. PubMed ID: 10994705 [TBL] [Abstract][Full Text] [Related]
14. Field-based high-throughput phenotyping enhances phenomic and genomic predictions for grain yield and plant height across years in maize. Adak A; DeSalvio AJ; Arik MA; Murray SC G3 (Bethesda); 2024 Jul; 14(7):. PubMed ID: 38776257 [TBL] [Abstract][Full Text] [Related]
15. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Zhang X; Pérez-Rodríguez P; Semagn K; Beyene Y; Babu R; López-Cruz MA; San Vicente F; Olsen M; Buckler E; Jannink JL; Prasanna BM; Crossa J Heredity (Edinb); 2015 Mar; 114(3):291-9. PubMed ID: 25407079 [TBL] [Abstract][Full Text] [Related]
16. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat. Ovenden B; Milgate A; Wade LJ; Rebetzke GJ; Holland JB G3 (Bethesda); 2018 May; 8(6):1909-1919. PubMed ID: 29661842 [TBL] [Abstract][Full Text] [Related]
17. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments. Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141 [TBL] [Abstract][Full Text] [Related]
18. Multi-environment analysis of sorghum breeding trials using additive and dominance genomic relationships. Hunt CH; Hayes BJ; van Eeuwijk FA; Mace ES; Jordan DR Theor Appl Genet; 2020 Mar; 133(3):1009-1018. PubMed ID: 31907563 [TBL] [Abstract][Full Text] [Related]
20. A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Boer MP; Wright D; Feng L; Podlich DW; Luo L; Cooper M; van Eeuwijk FA Genetics; 2007 Nov; 177(3):1801-13. PubMed ID: 17947443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]