These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33585867)

  • 21. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.
    Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J
    G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic prediction in multi-environment trials in maize using statistical and machine learning methods.
    Barreto CAV; das Graças Dias KO; de Sousa IC; Azevedo CF; Nascimento ACC; Guimarães LJM; Guimarães CT; Pastina MM; Nascimento M
    Sci Rep; 2024 Jan; 14(1):1062. PubMed ID: 38212638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genotype-environment interaction for grain yield in maize (Zea mays L.) using the additive main effects and multiplicative interaction (AMMI) model.
    Bocianowski J; Nowosad K; Rejek D
    J Appl Genet; 2024 Dec; 65(4):653-664. PubMed ID: 39115751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions.
    Bohlouli M; Alijani S; Naderi S; Yin T; König S
    J Dairy Sci; 2019 Jan; 102(1):488-502. PubMed ID: 30343923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America.
    Lopez-Cruz M; Aguate FM; Washburn JD; de Leon N; Kaeppler SM; Lima DC; Tan R; Thompson A; De La Bretonne LW; de Los Campos G
    Nat Commun; 2023 Oct; 14(1):6904. PubMed ID: 37903778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple-trait, random regression, and compound symmetry models for analyzing multi-environment trials in maize breeding.
    Ferreira Coelho I; Peixoto MA; Santana Pinto Coelho Evangelista J; Silva Alves R; Sales S; Resende MDV; Naves Pinto JF; Fialho Dos Reis E; Bhering LL
    PLoS One; 2020; 15(11):e0242705. PubMed ID: 33216796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects.
    Technow F; Riedelsheimer C; Schrag TA; Melchinger AE
    Theor Appl Genet; 2012 Oct; 125(6):1181-94. PubMed ID: 22733443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic prediction of maize yield across European environmental conditions.
    Millet EJ; Kruijer W; Coupel-Ledru A; Alvarez Prado S; Cabrera-Bosquet L; Lacube S; Charcosset A; Welcker C; van Eeuwijk F; Tardieu F
    Nat Genet; 2019 Jun; 51(6):952-956. PubMed ID: 31110353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomes to Fields 2022 Maize genotype by Environment Prediction Competition.
    Lima DC; Washburn JD; Varela JI; Chen Q; Gage JL; Romay MC; Holland J; Ertl D; Lopez-Cruz M; Aguate FM; de Los Campos G; Kaeppler S; Beissinger T; Bohn M; Buckler E; Edwards J; Flint-Garcia S; Gore MA; Hirsch CN; Knoll JE; McKay J; Minyo R; Murray SC; Ortez OA; Schnable JC; Sekhon RS; Singh MP; Sparks EE; Thompson A; Tuinstra M; Wallace J; Weldekidan T; Xu W; de Leon N
    BMC Res Notes; 2023 Jul; 16(1):148. PubMed ID: 37461058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions.
    Heslot N; Akdemir D; Sorrells ME; Jannink JL
    Theor Appl Genet; 2014 Feb; 127(2):463-80. PubMed ID: 24264761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The home field advantage of modern plant breeding.
    Ewing PM; Runck BC; Kono TYJ; Kantar MB
    PLoS One; 2019; 14(12):e0227079. PubMed ID: 31877180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index.
    Dao A; Sanou J; V S Traore E; Gracen V; Danquah EY
    Pak J Biol Sci; 2017; 20(3):132-139. PubMed ID: 29023004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield Within the Genomes to Fields Maize Project.
    Jarquin D; de Leon N; Romay C; Bohn M; Buckler ES; Ciampitti I; Edwards J; Ertl D; Flint-Garcia S; Gore MA; Graham C; Hirsch CN; Holland JB; Hooker D; Kaeppler SM; Knoll J; Lee EC; Lawrence-Dill CJ; Lynch JP; Moose SP; Murray SC; Nelson R; Rocheford T; Schnable JC; Schnable PS; Smith M; Springer N; Thomison P; Tuinstra M; Wisser RJ; Xu W; Yu J; Lorenz A
    Front Genet; 2020; 11():592769. PubMed ID: 33763106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A reaction norm model for genomic selection using high-dimensional genomic and environmental data.
    Jarquín D; Crossa J; Lacaze X; Du Cheyron P; Daucourt J; Lorgeou J; Piraux F; Guerreiro L; Pérez P; Calus M; Burgueño J; de los Campos G
    Theor Appl Genet; 2014 Mar; 127(3):595-607. PubMed ID: 24337101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates.
    Kusmec A; Yeh C'; ; Schnable PS
    New Phytol; 2024 Oct; 244(2):618-634. PubMed ID: 39183371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL.
    Schrag TA; Melchinger AE; Sørensen AP; Frisch M
    Theor Appl Genet; 2006 Oct; 113(6):1037-47. PubMed ID: 16896712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic Effects Conferring Heat Tolerance in a Cross of Tolerant × Susceptible Maize (Zea mays L.) Genotypes.
    Naveed M; Ahsan M; Akram HM; Aslam M; Ahmed N
    Front Plant Sci; 2016; 7():729. PubMed ID: 27313583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic-Enabled Prediction Kernel Models with Random Intercepts for Multi-environment Trials.
    Cuevas J; Granato I; Fritsche-Neto R; Montesinos-Lopez OA; Burgueño J; Bandeira E Sousa M; Crossa J
    G3 (Bethesda); 2018 Mar; 8(4):1347-1365. PubMed ID: 29476023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.
    Olivoto T; Nardino M; Carvalho IR; Follmann DN; Ferrari M; Szareski VJ; de Pelegrin AJ; de Souza VQ
    Genet Mol Res; 2017 Mar; 16(1):. PubMed ID: 28340272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of residual covariance structures on genomic prediction ability in multi-environment trials.
    Mathew B; Léon J; Sillanpää MJ
    PLoS One; 2018; 13(7):e0201181. PubMed ID: 30028886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.