These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33585870)

  • 1. Revisiting the genome-wide significance threshold for common variant GWAS.
    Chen Z; Boehnke M; Wen X; Mukherjee B
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33585870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resampling-based empirical Bayes multiple testing procedures for controlling generalized tail probability and expected value error rates: focus on the false discovery rate and simulation study.
    Dudoit S; Gilbert HN; van der Laan MJ
    Biom J; 2008 Oct; 50(5):716-44. PubMed ID: 18932138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet thresholding with bayesian false discovery rate control.
    Tadesse MG; Ibrahim JG; Vannucci M; Gentleman R
    Biometrics; 2005 Mar; 61(1):25-35. PubMed ID: 15737075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying the false discovery rate procedure based on the information theory under arbitrary correlation structure and its performance in high-dimensional genomic data.
    Rastaghi S; Saki A; Tabesh H
    BMC Bioinformatics; 2024 Feb; 25(1):57. PubMed ID: 38317067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.
    Liley J; Wallace C
    PLoS Genet; 2015 Feb; 11(2):e1004926. PubMed ID: 25658688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance testing and genomic inflation factor using high-density genotypes or whole-genome sequence data.
    van den Berg S; Vandenplas J; van Eeuwijk FA; Lopes MS; Veerkamp RF
    J Anim Breed Genet; 2019 Nov; 136(6):418-429. PubMed ID: 31215703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local and Bayesian Survival FDR Estimations to Identify Reliable Associations in Whole Genome of Bread Wheat.
    Sadeqi MB; Ballvora A; Léon J
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving power of genome-wide association studies with weighted false discovery rate control and prioritized subset analysis.
    Lin WY; Lee WC
    PLoS One; 2012; 7(4):e33716. PubMed ID: 22496761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping multiple quantitative trait loci under Bayes error control.
    Shriner D
    Genet Res (Camb); 2009 Jun; 91(3):147-59. PubMed ID: 19589185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis.
    Uimari O; Rahmioglu N; Nyholt DR; Vincent K; Missmer SA; Becker C; Morris AP; Montgomery GW; Zondervan KT
    Hum Reprod; 2017 Apr; 32(4):780-793. PubMed ID: 28333195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the posterior probability that genome-wide association findings are true or false.
    Bukszár J; McClay JL; van den Oord EJ
    Bioinformatics; 2009 Jul; 25(14):1807-13. PubMed ID: 19420056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covariate-modulated local false discovery rate for genome-wide association studies.
    Zablocki RW; Schork AJ; Levine RA; Andreassen OA; Dale AM; Thompson WK
    Bioinformatics; 2014 Aug; 30(15):2098-104. PubMed ID: 24711653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits.
    Yi H; Breheny P; Imam N; Liu Y; Hoeschele I
    Genetics; 2015 Jan; 199(1):205-22. PubMed ID: 25354699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian methods applied to GWAS.
    Fernando RL; Garrick D
    Methods Mol Biol; 2013; 1019():237-74. PubMed ID: 23756894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL.
    Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF
    Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation.
    Brinster R; Köttgen A; Tayo BO; Schumacher M; Sekula P;
    BMC Bioinformatics; 2018 Mar; 19(1):78. PubMed ID: 29499647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian statistical methods in genetic association studies: Empirical examination of statistically non-significant Genome Wide Association Study (GWAS) meta-analyses in cancers: A systematic review.
    Park JH; Geum DI; Eisenhut M; van der Vliet HJ; Shin JI
    Gene; 2019 Feb; 685():170-178. PubMed ID: 30416053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hidden Markov models for controlling false discovery rate in genome-wide association analysis.
    Wei Z
    Methods Mol Biol; 2012; 802():337-44. PubMed ID: 22130891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNP-based pathway enrichment analysis for genome-wide association studies.
    Weng L; Macciardi F; Subramanian A; Guffanti G; Potkin SG; Yu Z; Xie X
    BMC Bioinformatics; 2011 Apr; 12():99. PubMed ID: 21496265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.