These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33586442)

  • 1. Sub-10 nm Substrate Roughness Promotes the Cellular Uptake of Nanoparticles by Upregulating Endocytosis-Related Genes.
    Yin B; Ho LWC; Liu S; Hong H; Tian XY; Li H; Choi CHJ
    Nano Lett; 2021 Feb; 21(4):1839-1847. PubMed ID: 33586442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Surface Modification with Hydrocarbyl Groups on the Exocytosis of Nanoparticles.
    Ho LWC; Yin B; Dai G; Choi CHJ
    Biochemistry; 2021 Apr; 60(13):1019-1030. PubMed ID: 33169977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoting intracellular delivery of sub-25 nm nanoparticles via defined levels of compression.
    Yang H; Yao Y; Li H; Ho LWC; Yin B; Yung WY; Leung KC; Mak AF; Choi CHJ
    Nanoscale; 2018 Aug; 10(31):15090-15102. PubMed ID: 30059120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles.
    Li Y; Monteiro-Riviere NA
    Nanomedicine (Lond); 2016 Dec; 11(24):3185-3203. PubMed ID: 27882809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clathrin-mediated endocytosis of gold nanoparticles in vitro.
    Ng CT; Tang FM; Li JJ; Ong C; Yung LL; Bay BH
    Anat Rec (Hoboken); 2015 Feb; 298(2):418-27. PubMed ID: 25243822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles.
    Brandenberger C; Mühlfeld C; Ali Z; Lenz AG; Schmid O; Parak WJ; Gehr P; Rothen-Rutishauser B
    Small; 2010 Aug; 6(15):1669-78. PubMed ID: 20602428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physiologically based pharmacokinetic model for polyethylene glycol-coated gold nanoparticles of different sizes in adult mice.
    Lin Z; Monteiro-Riviere NA; Riviere JE
    Nanotoxicology; 2016; 10(2):162-72. PubMed ID: 25961857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles.
    Liu X; Huang N; Wang H; Li H; Jin Q; Ji J
    Biomaterials; 2013 Nov; 34(33):8370-81. PubMed ID: 23932246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms facilitating the uptake of carboxyl-polythene glycol-functionalized gold nanoparticles into multicellular spheroids.
    Fobian SF; Petzer M; Vetten M; Steenkamp V; Gulumian M; Cordier W
    J Pharm Pharmacol; 2022 Sep; 74(9):1282-1295. PubMed ID: 35417021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced gene transfection efficiency in CD13-positive vascular endothelial cells with targeted poly(lactic acid)-poly(ethylene glycol) nanoparticles through caveolae-mediated endocytosis.
    Liu C; Yu W; Chen Z; Zhang J; Zhang N
    J Control Release; 2011 Apr; 151(2):162-75. PubMed ID: 21376765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in uptake of 14 nm PEG-liganded gold nanoparticles into BEAS-2B cells is dependent on their functional groups.
    Vetten M; Gulumian M
    Toxicol Appl Pharmacol; 2019 Jan; 363():131-141. PubMed ID: 30529166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-functional core-shell Fe
    S R; M P
    Colloids Surf B Biointerfaces; 2019 Feb; 174():252-259. PubMed ID: 30469046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.
    Phuc LTM; Taniguchi A
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular transport pathways of polymer coated gold nanoparticles.
    Lin IC; Liang M; Liu TY; Monteiro MJ; Toth I
    Nanomedicine; 2012 Jan; 8(1):8-11. PubMed ID: 22024197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Peptides for Enhanced Uptake of PEGylayed Gold Nanoparticles.
    Cruje C; Chithrani BD
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2125-31. PubMed ID: 26413630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size, Shape, and Protein Corona Determine Cellular Uptake and Removal Mechanisms of Gold Nanoparticles.
    Ding L; Yao C; Yin X; Li C; Huang Y; Wu M; Wang B; Guo X; Wang Y; Wu M
    Small; 2018 Oct; 14(42):e1801451. PubMed ID: 30239120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells.
    Huang WC; Burnouf PA; Su YC; Chen BM; Chuang KH; Lee CW; Wei PK; Cheng TL; Roffler SR
    ACS Nano; 2016 Jan; 10(1):648-62. PubMed ID: 26741147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian Cells Exocytose Alkylated Gold Nanoparticles
    Ho LWC; Chan CKW; Han R; Lau YFY; Li H; Ho YP; Zhuang X; Choi CHJ
    ACS Nano; 2022 Feb; 16(2):2032-2045. PubMed ID: 35137580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine Receptor-Mediated Binding and Cellular Uptake of Polydopamine-Coated Nanoparticles.
    Liu Y; Choi CKK; Hong H; Xiao Y; Kwok ML; Liu H; Tian XY; Choi CHJ
    ACS Nano; 2021 Aug; 15(8):13871-13890. PubMed ID: 34379407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.