BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33586568)

  • 1. Refining
    Kasteel EEJ; Westerink RHS
    Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):1007-1017. PubMed ID: 33586568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholinesterase inhibition in electric eel and human donor blood: an in vitro approach to investigate interspecies differences and human variability in toxicodynamics.
    Kasteel EEJ; Nijmeijer SM; Darney K; Lautz LS; Dorne JLCM; Kramer NI; Westerink RHS
    Arch Toxicol; 2020 Dec; 94(12):4055-4065. PubMed ID: 33037899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical application of kinetic data in risk assessment--an IPCS initiative.
    Meek B; Renwick A; Sonich-Mullin C;
    Toxicol Lett; 2003 Feb; 138(1-2):151-60. PubMed ID: 12559699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty factors for chemical risk assessment: interspecies differences in glucuronidation.
    Walton K; Dorne JL; Renwick AG
    Food Chem Toxicol; 2001 Dec; 39(12):1175-90. PubMed ID: 11696391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Combined In Vitro Physiologically Based Kinetic (PBK) and Monte Carlo Modelling Approach to Predict Interindividual Human Variation in Phenol-Induced Developmental Toxicity.
    Strikwold M; Spenkelink B; Woutersen RA; Rietjens IMCM; Punt A
    Toxicol Sci; 2017 Jun; 157(2):365-376. PubMed ID: 28498972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel uncertainty factors and thresholds of toxicological concern for health hazard and risk assessment: Application to cleaning product ingredients.
    Wang Z; Scott WC; Williams ES; Ciarlo M; DeLeo PC; Brooks BW
    Environ Int; 2018 Apr; 113():357-376. PubMed ID: 29452931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty and variability in human exposure limits - a chemical-specific approach for ciprofloxacin and methotrexate.
    Oldenkamp R; Huijbregts MA; Ragas AM
    Crit Rev Toxicol; 2016; 46(3):261-78. PubMed ID: 26648512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty factors for chemical risk assessment: interspecies differences in the in vivo pharmacokinetics and metabolism of human CYP1A2 substrates.
    Walton K; Dorne JL; Renwick AG
    Food Chem Toxicol; 2001 Jul; 39(7):667-80. PubMed ID: 11397514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism, variability and risk assessment.
    Dorne JL
    Toxicology; 2010 Feb; 268(3):156-64. PubMed ID: 19932147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays.
    Sachana M; Willett C; Pistollato F; Bal-Price A
    Reprod Toxicol; 2021 Aug; 103():159-170. PubMed ID: 34147625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans.
    Dorne JL; Renwick AG
    Toxicol Sci; 2005 Jul; 86(1):20-6. PubMed ID: 15800035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of chemical-specific adjustment factors (CSAF) based on recent international experience; increasing utility and facilitating regulatory acceptance.
    Bhat VS; Meek MEB; Valcke M; English C; Boobis A; Brown R
    Crit Rev Toxicol; 2017 Oct; 47(9):729-749. PubMed ID: 28681680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New approach methods (NAMs) supporting read-across: Two neurotoxicity AOP-based IATA case studies.
    Van der Stel W; Carta G; Eakins J; Delp J; Suciu I; Forsby A; Cediel-Ulloa A; Attoff K; Troger F; Kamp H; Gardner I; Zdrazil B; Moné MJ; Ecker GF; Pastor M; Gómez-Tamayo JC; White A; Danen EHJ; Leist M; Walker P; Jennings P; Hougaard Bennekou S; Van de Water B
    ALTEX; 2021; 38(4):615-635. PubMed ID: 34114044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Collaborative Cross Mouse Population to Fill Data Gaps in Risk Assessment: A Case Study of Population-Based Analysis of Toxicokinetics and Kidney Toxicodynamics of Tetrachloroethylene.
    Luo YS; Cichocki JA; Hsieh NH; Lewis L; Wright FA; Threadgill DW; Chiu WA; Rusyn I
    Environ Health Perspect; 2019 Jun; 127(6):67011. PubMed ID: 31246107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of toxicokinetic and toxicodynamic data in risk assessment: an international perspective.
    Gundert-Remy U; Sonich-Mullin C;
    Sci Total Environ; 2002 Apr; 288(1-2):3-11. PubMed ID: 12013545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity.
    Li J; Settivari R; LeBaron MJ; Marty MS
    Neurotoxicology; 2019 Jul; 73():17-30. PubMed ID: 30786249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scoping review of evaluations of and recommendations for default uncertainty factors in human health risk assessment.
    Johanson G; Moto TP; Schenk L
    J Appl Toxicol; 2023 Jan; 43(1):186-194. PubMed ID: 36017531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Current challenges and future perspectives of iPSC-based neurotoxicity testing].
    Tsunemoto K; Yamada S; Kanda Y
    Nihon Yakurigaku Zasshi; 2021; 156(2):107-113. PubMed ID: 33642528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Pragmatic Framework for the Application of New Approach Methodologies in One Health Toxicological Risk Assessment.
    Magurany KA; Chang X; Clewell R; Coecke S; Haugabrooks E; Marty S
    Toxicol Sci; 2023 Feb; 192(2):155-77. PubMed ID: 36782355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach for integrating toxicogenomic data in risk assessment: the dibutyl phthalate case study.
    Euling SY; Thompson CM; Chiu WA; Benson R
    Toxicol Appl Pharmacol; 2013 Sep; 271(3):324-35. PubMed ID: 23537663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.